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- ABSTRACT

This report describes progress that has been made in the ability of a computer
system to understend and reason about actions. A new method of representing
actions within a computer memory has been developed, and this new representation,
called thé procedural net, has been employed. in daveloping new strategies for

'solving problems and monitoring the execution of the resuiting solutions.

A set of running computer programs, called the NOAH (Nets Of Action
Hierarchies) system, embodies the representation and strategies discussed at;ove.
Its major goal is to provide a framework for storing expertise about the actions of 2
particular task domain, and to impart that expértise to a human in the cooperative

achievement of nontrivial tasks.

A problem is presented to NOAH as a statement that is to be made true by
applying a sequence of actions in an initial state of the world. The actions are
drawn from a set‘ of actions previously defined to the system. NOAH first creates a
one-step solution to the problem (essentially "Solve the given goal"). Then it
progressively expands the level of detail of the solution, filling in ever more
detailed actions. All the individual actions, composed into plans at differing lev'els of
detail, are stored in a data structure calied the procedural net. The system avoids
impos‘ing unnecessary constraints on the order of the actions in a plan. Thus, plans

are represented as partial orderings of actions, rather than as linear sequences.

. The same data structure is used to guide the human user through a task.



Since the system has planned the task at varying Iev_els of aetail, it can issue
requests for actfon to the user at varying levels of detail, depending on his
competence and understanding of the higher-level actions. If more detail sh6u|d be
needed than was originally planned for, or if an unexpected event céuses the plan to

. go awry, the system can continue to plan from any point during execution,

The key ideas that are explored in the dissertation include:

(1) planning at many levels of detail,

_(2) representing a plan as a partial ordering of actions with respect to time,

(3) execution monitoring and error recovery using hierarchical plans,

(4) using procedures that represent a task domain to generate declarative
{frame-like) structures that represént individual actions, and

(B) using abstract actions to model iterative operators.

The major point of the report is that the structure of a plan of actions is as
impertant for problem solving and execution monitoring as the nature of the actions

themselves,



PREFACE

This Technical Note is a slightly revised version of a dissertation submitted to
the Department of Corﬁputer Science and the Committes on Graduate Studies of
Stanford University in partial fulfillment of the requirements for the degree of

Doctor of Philesophy.
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1 INTRODUCTION

A. Qverview of the Report

This report describes progress that has been made in the ability of a computer
system to understand and reason about actions. A new method of representing
actions within a computer memory has been developed, and this new representation,
called the procedural net, has been employed in developing new strategies for

solving problems and monitoring the execution of the resulting solutions.

The report will Eegin with a functional description of the NOAH (Nets Of Action
Hierarchies) system, a set of running programs that embody the representation and
strategies mentioned above. Then the Computer-Based Consultant (CBC) project at
SRI will be briefly described, since that is the testbed for the validity of the ideas
incorporated in NOAH.

The following three chapters discuss in detail the representation, the problem
solving strategy, and the execution monitoring strategy. Each of these chapters
begins with a rather personal historical perspective on the development of the key
ideas in the area. This is being done in the belief that an integrated story, even a
biased one, is more interesting and imparts more understanding than a simple listing
of relevant work. -Each of these chapters ends with a brief survey of relevant
current work in the area. In each of these chapters, the overall system is treated
from a different point of view. The reader who wishes to obtain an immediate
perspec'tive on the current wor;k- is encouraged to read first the initial sections of

Chapters I, lll, and IV.



The report will conclude with a discussion of the inadequacies of the

 implemented system, and with éuggestions for further investigation.

B. Functional Description of the NOAH System

NOAH is an integrated problem solving and execution monitoring system. its
majof goal is to provide a Iframework for storing expertise about the actions of a
particﬁiar task domain, ‘and to impart that expertise to a human in the cooperative
achievement of nontrivial tasks. Knowledge about a task domain is supplied to the
system in two ways. Knowledge about the actions that may be taken in the domain
is. specified in procedural form. Knowledge about the particular state of the world
in which a particular problem is to be solved is given to the system as a set of
declarative expressions. In addition, knowledge about the ways in which individual

actions and subplans can interact is emBodied within the system itself.

Thus, there are three levels of knowledge that are brought to bear on any
particular problem. The system holds general problem solving knowledge; the
procedural specification of actions holds knowledge about the actions possible in a
particular domain; and the data base of symbolic expressions contains knowledge

about a particular situation within the particular domain.

A problem is presented to NOAH as a statement that is té be made true by
applying a séquence of actions in an initial state of the world. The actions are
drawn from a set of actions previously defined to the system. NOAH first creates a
one-step solution to the problem (essentially "Solve the given goal™). Then it

progressively expands the level of detail of the solution, filling in ever more
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detailed actions. The system does not need to carry this process out until it
reaches the pl.'imiti\)e actions of the system. Depending on the purpose of the plan,
the planning phase may be terminated at a relatively broad-brush level of detail.
All the individual actions, composed into plans at differing levels of detail, are stored
in a data structure called the procedural net. This same data structure is then used
to guide the human user through-a task. Since the system has planned the task at
varying levels of detail, it can issue requests for action to the user at varying levels
of detail, dépending on his competence and understanding of the higher level actions.
If more detail shoﬁld be needed than was originally planned for, or if an unexpected
event causes thg plan to go'awry, the system can continue to plan from any point

during execution.

C. Overview of the Computer-Based Consuitant Project

NOAH was not developed exciusively for its theoretical interest, although this
is emphasized in the present report. It was intended to serve a useful purpose
within the context of a larger computer system, called the Computer-Based

Consultant [16]

. The goal of the‘ CBC project is to produce a computer system that can fill the
‘role of an expert in the cooperative exécution of complex tasks with a relatively
inexperienced human apprentice. "The system will use rich channels of
communication, including natural language and eventually speech. The main function
of the consultant will be to aid the apprentice‘ in the diagnosis of faulty
electromechanical equipment, and the formulation of plans for the assembly,

disassembly, and repair of the equipment.



The NOAH system was built to serve as the problem solving and execution
monitoring component for dealing with assembly and disassembly tasks. Following is

a description of the design goals for the CBC that NOAH is intended to satisfy.

The system is intended to be able to generate step-by-step plans for
converting a device from one arbitrary state of assembiy into another state. The
system is to be able to do this at several levels of attention, from major

components down to the simple fasteners.

The CBC will generate plans in a hierarchical fashion in order to interact with
the apprentice at a fevel that matches his expertise. The system will, upon request

by the apprentice, provide more detailed instructions for any step in the process.

It will answer specific questions about the instructions it has given, questions

like, "What is the purpose of this step?" or "What kind of wrench should be used for

this step?"k

The system will monitor the apprentice’s work to ensure that the operation is
proceeding normally. When the system becomes aware of an unexpected event, it

. will alter instructions to the apprentice to deal effectively with the new situation.

The system will be organiéed in such a way that the expertise to be held in
the CBC can be encoded modularly, and updated easily. Information about new
equipment should be easy to add. The system, and not the encoder of the system’s
expertise, should have major respoﬁsibility for the integration of independent items

of knowledge. -
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Each of these capabilities is pres>ent in at least rudimentary form in the current
NOAH system. With an appropriate representation for the system’s knowledge, their

achievement was, in fact, rather straightforward.



Il A DESCRIPTION OF THE PROCEDURAL NET REPRESENTATION

A. Historical Perspective

The representation of knowledge within a computer memory is an issue which
every attempt at artificial intelligence must face. For a number of years there has
been considerable controversy in the artificial intelligence community over how this

should be done.

The controversy concerned whetﬁer knowledge should be represented in
declarative form or in procedural form. Some held that knowledge should only be
stored in one or the other form. Later, a 'strong‘ case was made for hybrid
repraesentations with both procedural and declarative components, These hybrids,
calied "frames" [25,41], "beings" [19], or “property lists" [20] reﬂect the general
agreement of workers in the field that aepects of both representations are needed
in all programs. While this is certainly true, the vague label of "frame" does mask
an important underlying distinction between the kinds of knowledge that are used in

problem solving.

On the one hand, basic knowledge about the task domain must be given to the
computer. We s_hall call this kind of knowledge the domain knowledge. An exampte
of domain knowledge is a characterization of the legal operations within the domain
that transform one state into another. Other examples are knowledge about the
ways in which individual actions can interrelate, and the interrelationships among the

relations that describe the domain.



A DESCRIPTION OF THE PROCEDURAL NET REPRESENTATION 7

On the other hand, a problem solver develops ancther kind of knowledge as it
plans about the effects of alternative sequences of actions. We shall call this kind
of knewledge the plan knowledge. An example of plan knowledge is the ranked
collection of alternative sequences of individual actions that the problem solver has
under consideration for achieving a given goal state. Other examples are a
characterization of the purpose of each action within an overall plan, and a measure

of the cost or difficulty of each action,

These kinds of knowledge are clearly related, since the planned effect of a
given sequence of actions depends on the domain-specific character of the individual

actions. .But the kinds of knowledge are used in very different ways.

Most early computer programs that performed at all impressively read in unit
after unit of data and performed a fixed series of calculations on each one. Many
programs that attempted to reason intelligently followed this paradigm of applying a
fixed algorithm to different sets of data. They accepted unit upon unit of domain
knowledge in declarative form, and processed it with a general-purpese algorithm.
Examples‘ of such programs include theorem provers (for example,  Green’s QA3
[15]) and language understanding systems using semantic nets (for example,
Quillian’s TLC [27]). Much of the plan knowledge ie these systems was embodied in

the code and the control structures of a general purpose data-massaging program.

For a computer system to deal with any meaningful domain of knowledge, such
a representation will be inadequate. The declarative domain knowledge allows all
the facts known to the system to be processed in a uniform way. But it requires

that much of the plan knowledge be embedded in a rather general data massager



g
which will either be simple and therefare lack goal-directedness, or else be complex

and therefore hard to update and improve.

In reaction to this problem, hembers of the Artificial Intelligence lab at MIT
developed a philosophy about representation which is generally called the
"procedural embedding of knowledge." Hewitt’s PLANNER language [18] was
developed as a vehicle for this embedding. The full PLANNER language is extremely
complex, and was never implemented. A simplified version, MICROPLANNER, was
developed by Sussman and Winograd [37], and was used with considerable success
in a planner for a simple blocks world [42] But there was a big problem with such
a "simple” procedural representation. It did not have a good way of dealing with
alternatives. They could only be explored by running out some control path until
the program ran into trouble, then backing up to a place where an alternative had

been picked, choosing another alternative, and running the program out again.

This blind approach to reasoning about alternatives, called “automatic
backtracking," is required in MICROPLANNER because the language provides no way
to represent plan knowledge in a form accessible to the programmer. Sussman and
McDermott [36] probosed to deal with this problem by decoupling the state of the
data base from the state of the control path. Then the data base wouid be used for
domain kﬁowledge, and fhe control paths would be used to represent plan
knowledge. The control paths can be explicitly referenced in this approach. The
result of this attempt, CONNIVER [22], has typically been used [35, 9] by saving
multiple control environments that ar;e queried during attempts at analyzing

alternatives. The control environments of CONNIVER thus provide a means of
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representing plan knowledge, but the representation is quite hard to use.
Sophisticated programs using the CONNIVER representation have typically been
extremely siow, since it is costly to use the control environments for pian

knowl _edge.

The procedural embedding apprqach was 6verdone. It is true that procedures
allow efficient goal-directed processing, and are easy to ubdate. But it is difficult
for a procedurally based knowledge system to characterize what knowledge is
available to it. Furthermore, it is difficult to leave an appropriate record of the
invocations of the procedures which represent the system’s knowledge. A
knowledge-based system that is engaged in a mixed-initiative interaction must know
what it knows and know what it is doing if it is to have us believe that it

“understands.”

To encode NOAH’s knowledge of the actions in its world, we have taken yet a
third approach to the representation issue. We call our representation a
procedural net. It is a strongly connected network of nodes, each of which may
contain both procedural and declarative information. The procedural information is
used to represent the domain knowledge, as was done by the “procedural
embedding” school. But the plan knowledge is represented declaratively in the
contents of the nodés and in the structure of the net itself. This enables NOAH to
handle easily rather sophisticated queries about the state of its own reasoning

processes. NOAH is, in a limited sense, self-aware.

The structure of the procedural net is the major source of NOAHs power in

solving problems and monitoring their execution. Let us examine it in detail.
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B. The Structure of g Procedural Net

The procedural net is a network of actions at varying levels of detail,
. structured into"a hierarcﬁy of partially ordered time sequences. By an action, we
mean any operation that changes the st.ate of the world. An action at a particular
level of detail is represented by a single node in the procedural net. Each node
contains procedural information, declarative information, and pointers to other nodes.
The nodes are linked to form hierarchical descriptions of operations, and to form

plans of action.

The information associated with each node is stored-as a set of property-value

pairs. A full list of the properties that a node can be found in Appendix A.

Each node in the procédural net may refer to a set of child nodes that
represent more detailed subactions. When executed in order, the child nodes will
achieve the effects of their parent. The parent-child relationships allow the system

to represant and reason about actions in a hierarchical fashion.

Nodes at each level of the detail hierarchy are linked in a partially ordered
time sequence by predecessor and successor links. Each such sequence represents

a plan at a particular level of detail.

There are many different types of nodes. Each type represents an action (or a
dummy action) with different characteristics. The types that represent actions will
be discussed in the following section. Some of the more esoteric types will be

discussed as they appear in the text.
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Each node points to a body of code. The action that the node represents can
be expanded to greater detail by evaluating the body. The evaluation will cause
new nodes, repraesenting more detailed actidns, to be added to the net. It will also

associate with these nodes the effects of the more detailed actions.

Associated with each nodé is an add list and a delete list. They centain
" symbolic expressions representing the changes to the world model caused by the
action that the node represents. The add and delete lists are used to develop
models of the world at each point in a plan. How this is done is discussed in detail

in Section D below.

Together, the add and delete lists represent how the action that a node
represents affects the world model. We shall sometimes refer to the add and
delete lists together as the effects of a node. The effects are computed when the
node is created, and may be. updated while the plan containing the node is
completed. No information from more detailed subactions is ever reflected in the

effects of a node. |

Each node of the procedural net thus contains two very different
representations of an action. The add and delete lists provide a declarative
representatién of actions that is quite similar to that of STRIPS [13] The body of
code provides a pr‘ocedural répresentation similar to that of PLANNER-like languages
[2] The declarative representation is used to model the action at the node’s own
level of detail. The procedurai representation is ﬁsed for generating more detailed

subactions at levels of greater detail.
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Figure 1 shows the graphic notation used here to display a node of a

procedural net.

/
Predecessor{s} {— —» Successor(s)

4
) 1 “

Children

Node types are designated as follows:

Query ( Query ) S J

GOAL PHANTOM ANDSPLIT ANDJOIN

type type "Vge
S ) uery

other SPLITS other JOINS other NODES

FIGURE 1 GRAPHIC REPRESENTATION OF A NODE

As a simple example, let us examine a procedural net representing a hierarchy
of pilans to paint a ceiliﬁg and paint a stepladder. The plan can be represented, in
an abstract way, as a single node as shown in Figure 2a. In more detail, the plan is
a conjunction, and fnight be represented as in Figure 2b. The major subgoals to
paint the ladder and the ceiling are in parallel branches of the partial ordering. This
means that they are both to be achieved after the split, and before the join, but
that at this :Ievel of detail the representation does not specify whether one action

should be performed before the other.
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LEVEL 1

Paint the ceiling and paint the ladder

LEVEL 2

LEVEL 3
(Before Criticism)

{a)

Paint the ceiling \

v
AN

Paint the ladder

{b)

S

Get paint— Get ladder Apply paint to ceiling\

v
AN

LEVEL 3
{After Criticism

by Resolve Conflicts)

/ Get paint

Get paintL—- Apply paint to ladder —/

{c)

Get ladder Apply paint to ceiling

-t

\ Get paint

C

J Apply paint to ladder

FIGURE 2

{d)

PROCEDURAL NET FOR PAINTING

13
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The more detailed subplans to achieve these two goals might be "Get pai‘nt,
get ladder, then apply paint to ceiling," and "Get paint, then apply paint to ladder,"
as depicted in Figure 2c. Note that the plan in Figure 2c is not a reliable one: it
allows for the Iadder.to be painted before it must be used for painting the ceiling.
A safer plan is depicted in Figure 2d. How NOAH transforms the unreliable plan into

a safe one will be described in the next chapter.

For the sake of clarity, we will. usually omit (as we have in Figure 2) the

special PLANHEAD node that indicates the start of each plan. We will alsoc often
omit much of the information associated with each node from the pictorial
representation. The add and delete lists, for instance, are not indicated in Figure 2.
They are not hard to infer, however. For example, "Get ladder" will cause "Has
ladder" to be added to the world model, and "Apply paint te ceiling" might\ delete

"Has paint" from the world model.

The systefn infers certain important relationships from the parent-child links
that indicate which nodes represent detailed expansions of other nodes. (These
pointers are also omitted in Figure 2.) The system ‘assﬁmes that the purpose of
| every action but the last in §uch an expansion is to-establish the truth of some
e#pression in order to make the final action applicable. We will call both the
expressions that are to be made true and the nodes that make them true
preconditions. We will call both the last node in a more detailed expansion of a
node and' the pattern associated with the last node the purpese of the

preconditions.
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C. Encoding Domain-Specific Knowledge

Knowledge about the task domain is given to the system in procedural form,
written in the SOUP (Semantics Of User’s Problem) language. SOUP is an extension
of QLISP [28] that is interpreted in a unique fashion*. The process of planning
transforms this procedural knowledge into the hybrid procedural net form, which
contains both procedural and declarative information, and which represents a

hierarchy of soiutiorns to the particular problem at hand.

We will first present the statements of SOUP that have been added to QLISP
(we will call them P-statements). Then we will describe how the SQUP code is

interpreted, and show some specific examples of SOUP code.
P-statements that refer to actions are:

PGOAL -- A 'PGOAL statement is of the form: (PGOAL guery pattern APPLY
team). Its meaning is similar to the QLISP GOAL statement. it has an additional
argument, the guery, that specifies a verbal request for the goal to be achieved.
Evaluation of a PGOAL results in the insertion of a new node in the procedural net.
If altrue instance of the goal pattern is found in the world model, a PHANTOM node
is created. If no true instance is found, a GOAL node is created. The add list of the
node will contain an expression.that is the result of instantiating the pattern when
the PGOAL statement is evaluafed. The body of the node will be the list of

procedures specified by the team:

*We will presume that the reader is familiar with QLISP or some other PLANNER-like
language. Bobrow and Raphael [2] provide a survey of some of these languages. In
QLISP and SOUP, 'variables are indicated by the prefix « or §. The « prefix
indicates that the variable is to be assigned a new value, the 8 prefix indicates the
previous value of the variable,
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PBUILD -- A PBUILD statement is of the form: (PBUILD class-name guery

(ITERATE...)). It specifies an -action that will build up a class of objects. The query is
a verbAal request to build up the class. The lTEFéATE statement contains an arbitrary
body of code that speci‘fies the subactions involved in processing one element of the
class. Evaluation of a PBUILD statement results in the creation of a BUILD node in

the procedural net.

PBREAK -- PBREAK has the same syntax as PBUILD. It specifies an action that
itarates through a preexisting class of objects, Evaluation of a PBREAK statement

results in the creation of a BREAK node in the net.

PAND -- A PAND statement is of the form: (PAND exp-1 exp-2 .. exp-n).

PAND specifies a collection of expressions which may be evaluated independently.
Execution of a PAND statement results in a n-way branching in the partially ordered
time sequence of the plan at the current level of detail in the procedural net. The

branching is delimited by an ANDSPLIT and an ANDJOIN node.

POR -- POR has the same syntax as PAND. It specifies a collection of
expressions, only one of which need be evaluated without failure. Execution of 3
POR statement results in a n-way branching in the time sequence of the plan at the
current level of detail. Only one branch need be included in a final plan. The

branching is delimited by an ORSPLIT and ORJQOIN nade.
P-statements that refer specifically to the world model are:

PIS -- A PIS statement is of the form: (PIS exp). It searches for an instance of

the expression exp that is true in the current world model. (How this search is



A DESCRIPTION OF THE PROCEDURAL NET REPRESENTATION 17

performed is described in Sectian D below.}) If none is found, it causes a failure

condition.

PINSTANCES -- A PINSTANCES statement is of the form: (PINSTANCES exp). It
operates like PIS exqept that it returns all the instances of exp that are true in the

current world model.

PASSERT -- A PASSERT statement is of the form: (PASSERT exp). It makes
exp be true in the current world model and place§ exp on the add list of the most
recently generated node in the procedural net. PASSERTs are used to specify the

equivalent of the secondary adds of the STRIPS problem solver [12],

PDENY -- PDENY is similar to PASSERT. It makes exp be false and adds exp

to the delete list of the current node,

PRECLUDE -- A PRECLUDE statement has the form: (PRECLUDE variable value).

1t is used to preclude the binding of a variable to a specific value when the next
PGOAL statement queries the data base. This forces the PGOAL statement to seek
an alternative expression in the data base, or to set up a genuine GOAL node to

achieve its truth.

~When a P-statement that refers to an action (i.e, PGOAL, PBUILD, PBREAK, or
PAND) is evaluated, it does nol cause an arbitrarily deep computation, as would
most PLANNER-like languages [2] Rather, the action is simulated at an abstract
jevel and the world model is updated as if the deep computation had been done and
the action were accomplished in full detail. The information necessary to continue

the computation to further depths is stored as the body of code associated with the
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new nodes that are created in the procedural nét. For example, when a PGOAL
statement is evaluate'd (thus simulating the action that achieves the goal), the‘team
of functions associated with the statement is placed as the body of the new node
representing that goal. When a PBULD or PBREAK statement is evaluated, the
ITERATE clause is stored as the new node’s body. This type of evaluation resuits in
the creation of hierarchies of plans of increasing detail. This scheme thus extends
the ability to do hierarchical planning as was done by ABSTRIPS [31] from a
syntactically oriented declarative representation to SOUP’s semantically oriented

procedural representation.

As an example, let us examine some SOUP functions for a set of simple blocks
problems. The complete semantics of the actions of this domain are listed in
Appendix B. The simplest problems can be solved with just the functions shown in
Figure 3. Let us look at CLEAR, for example. The code says, "If the variable X is
" TABLE, then it is already clear’. Otherwise, see if some black Y is on X. If so, clear

Y and then remove Y by putting it somewhere else."™

Now, in any PLANNER-like language, the subgoal to clear Y would be
immediately attacked. If there were a large tower of blacks on top of Y, they would
all be cleared at this tim‘e. When NOAH evaluates the SOUP code, hoWever, it
simply asserts '(CLEARTOP 8Y) and then goes on with the evaluation of CLEAR. It
also places a node in the procedural net whose type is GOAL, whose pattern is
(CLEARTOP 8Y), and whose body is a list containing the single function CLEAR. This
' is_ sufficient information to enable NOAH to fire up the subgoal to clear Y when it

needs to plan to greater detail.

*Note that this is a very simple-minded interpretation of “clear" A more
sophisticated procedure might find space on X for an additional block.
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FIGURE 3
SOUP CODE FOR SIMPLE BLOCKS PROBLEMS

{CLEAR
{QLAMBODA
{CLEARTGOP +X)
(OR
{EQ 8X (QUOTE TABLE))
{QPROG
{«Y)
(ATTEMPT (PIS (ON Y 8X))
THEN {PGOAL (Clear 8Y}
(CLEARTOP 8Y)
APPLY
{CLEAR})
(PRECLUDE +Z 8X)
(PGOAL (Put 8Y on top of +«Z2)
{ON 8Y «Z)
APPLY NIL))
{POENY (ON 8Y 8X))
{RETURNI)

{PUTON
{QLAMBOA
{ON «X «Y)
{PAND
{PGOAL {Clear %X}
{CLEARTOP 8X)
APPLY
- (CLEAR)}
(PGOAL (Clear $Y)
(CLEARTOP 8Y)
APPLY
(CLEAR)))
- {PGOAL (Put 8X on top of 8Y)
(ON 8X 8Y)
APPLY NIL]
{PDENY (CLEARTOP 8Y1)))

18
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If there were no blocks on Y, and (CLEARTOP 8Y) were known to be tr'rue, the
GOAL statement of a PLANNER-like language would be -satisfied and the program
. would go on. Similarly, when NOAH evaluates a PGOAL statement which is satisfied
in the current world model, it places a node in the procédural net of type PHANTOM.
A PHANTOM node is just like a GOAL node except that it will not be expanded to

greater detail.

D. A Distributed World Model and an Approach to the Frame Problem

The procedural net is a highly structured representation for actions. Various
aspects of the problem solving and execution monitoring functions.of NOAH analyze
the effects of aggregations of actions in different ways. It is therefore important to
héve an easy method for constructing and updating world models for afbitrary
aggregations of actions, The procedural net allows for this by associating a partial
world model with each action. The partial model reflects just the changes to the
world caused by the individual action. The partial world models are layered upon
one another, in an order determined by the time sequence of the actions, to form a
complete world model. The links that order the layers of the model are precisely

the same links that order the actions in time sequence.

For example, Figure 4 shows the add and delete lists that might be associated
with each node in the most detailed plan in the painting example discussed earlier.
A query of the world model (in particutar, the evaluation of the statement:
(PINSTANCES «X) )} from a point just before the “Apply paint to ladder” node in
Figure 4a would find just the assertion (ONHAND LADDER-PAINT). The same query

made from the same point in Figure 4b, which is identical to Figure 4a except for an
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alteration in the partial ordering, would find the assertions {ONHAND LADDER-
PAINT), (PAINTED CEILING), and (CNHAND LADDER). For lengthy plans and large
world models, this method of maintaining and querying a world model can be quite
inefficient. Typically, most of the facts in an initial model will not be altered during
the course of a given plan. (This state of affairs is a broader view of what
McCarthy and Hayes [21] termed the "frame problem™: that most facts in a world
model are not altered by applying a single action) If thé distributed world model
were used in its pure form, mest queries would have to be carried all the way back
to the PLANHEAD node that begins each plan before an answer could be determined.
This is essentially what happens in the modelling schemes used by Waldinger [39]
and Warren [40].

NCAH uses a hybrid approach, so that all the expressions whose truth value
has never changed (i.e, the frame axioms) are accessed through a giobal world
model. When an expression’s truth value is changed, it is removed from the global
model. lts new truth value is indicated by placing it on the add or delete list of the
node that is altering it. Its former truth value is indicated by inserting the
expression on the add or delete list of the PLANHEAD node of the plan being
generated. The model query aigorithrri always chacks the global world model first.
- If a truth value can be determined from this check, the querying process is finished.

If not, the distributed world model contained in the current F}Ian is checked.

This method of maintaining and accessing a world model thus provides an
efficient means of dealing with frame axioms while also providing a very flexible

method of modelling the changes caused by actions and plans of éctions.
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_E. A Verv Simpie Example

To obtain a better understandiﬁg of how the representation is usea, let us
examine in detail how NOAH sclves a very trivial problem. (The casual reader may
safely skip this section) The systém knows only of two blocks. In the initial state,
Block B is on Block A. The goal is to achieve a state in which Block A is on Block B,
as depicted in Figure 5. The problem can be solved using just the node expansion
process which has been described in section C. The problem solving techniques
used by NOAH for more sophisticated problems will be discussed in the next

chapter,

B A
A B
Initial State: Goal State:
(ON B A) {(ON A B)
(CLEARTOP B)

FIGURE 5 A VERY SIMPLE PROBLEM

An initial world model is defined by ASSERTing and DENYing expressions as in
ordinary QLISP. For the example, the following QLISP statements cause the initial
world model to be set up:

(ASSERT (ON B A))
(ASSERT (CLEARTOP B)).
The system is invoked with the goal: (ON A B).

It builds an initial PLANHEAD node in the procedural net. This is followed by a



- 24

GOAL node. lts pattern is (ON A B). Its query is (Achieve (ON A B)). Its body is
the value of the system variable SALLFNS, which the definer’ of the domain has set
to a list of all the i:op-lei/ei functions in the domain. In this case, this is the list of
programs: (PUTON CLEAR). (These‘ programs were listed in Figure 3.) The node’s
context is a descendanf of the global context in which the ariginal world model was
spécified. Its add list consists of the single expression: (ON A B). This single node

represents a high-level plan to achieve (ON A B). The plan is depicted in Figure 6.

PLANHEAD Achieve (ON A B)
body: (PUTON CLEAR)
adds: (ON A B)

FIGURE 6 EXAMPLE PROCEDURAL NET BEFOQRE EXPANSION

The simple plan -is now expanded. This is done by expanding each node in the
partially ordered time éequence of the plan.- Ties are broken arbitrarily. First, the
PLANHEAD node is expanded. Since it has no body, a child is created that is a
simple copy. The GOAL node is next expanded. Each of the functions in its body is
applied in turn to the pattern (ON A B), using the standard QLISP pattern matching
algorithm. PUTON, the first function in the body, is applicable. PUTON specifies that
three statements are to be evaluated in sequence: a PAND, a PGOAL, and a PDENY.
The PAND is evaluated first. It causes a SPLIT node to be added to the new plan.
Then, each of the PGOALs within the PAND is evaluated. Each causes a new node
to be added. The new nodes have (CLEARTOP A) and (CLEARTOP B) as their
patterns, Both have the function CLEAR as their body. The node referring to
(CLEARTQP A) is a GOAL node, since (CLEARTOP A) is not true in the current world



A DESCRIPTION OF THE PROCEDURAL NET REPRESENTATION 25

model {the model associated with the new SPLIT node) when the PGOAL staterent
is evaluated. The node referring to (CLEARTOP B) is a PHANTOM node, since
(CLEARTOP B) was asserted in the initial world model, and has not been denied
since. Finally, the evaluation of PAND is completed by inserting a JOIN node after

the twolnew nodes;.

Next, the PGOAL statement of PUTON is evaluated. It causes a new node
whaose pattern is (ON A B) to be added to the new plan after the JOIN node. The
node is a GOAL node since (ON A B) is not true in the current world model. The
node has no body; the action it represents is a primitive in the domain. It might

represent an actual high level command to a robot arm.

~ Finally, the PDENY statement is evaluated. It causes (CLEARTOP B) to be
deleted from the global context, and inserted on the a&d list of the PLANHEAD
nodes at the current level. It also causes (CLEARTOP B) to be inserted on the

delete list of the recently created GOAL node.

Now, the expansion of fhe higher level GOAL node has been completed. When
the expansion of a node is completAed. the add and delete lists of the newly created
last child are augmented by fhe expressions on the add and delete lists of the
parent. The last child node in the expansion of a parent node inherits its parent’s
effects, since by the time the last child has been executed, the entire higher-level
action will have been performed. In this case, the GOAL node that is the last child

already has (ON A B) on its‘a-dd fist, so-n'othing extra is added.

Figure 7 shows the procedﬁral net with the new, more detailed plan.
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Achieve {ON A B}
body: (PUTON CLEAR)
adds: (ON A 8)

T T < -

] ~ T

PLANHEAD '

V4 - Clear A
~ body: {CLEAR)
adds: {CLEARTOP A)

Put A on B
adds: {ON A 8)
defetes: {CLEARTOP B}

PLANHEAD
adds:
{CLEARTQP B)

Clear 8
body: (CLEAR)
adds: {CLEARTOP 8)

FIGURE 7 EXAMPLE PROCEDURAL NET AFTER ONE STAGE OF EXPANSION

This new plan is now expanded. First, a new PLANHEAD node is created.
Then the SPLIT node is simply copied since it has no bady. The system begins work
on the upper branch of the conjunction. The GOAL node whose pattern is
(CLEARTQP A) is now expanded. Its body is the single function CLEAR, and it is
applicable to the pattern. CLEAR checks to see if A is the TABLE, finds it is not,
and then queries the model to see what is on A. The context of the node contains
the assertion (ON B A), so the local variable 8Y is bound to B. Then a PGOAL, a
PRECLUDE, another PGOAL, and a PDENY are evaluated in sequence. The first
PGOAL results in the creation of a PHANTOM node with (CLEARTQP B} as its pattern
and the function CLEAR as its body. The PRECLUDE statement forbids the following
PGOAL to succeed by finding that (ON B A) is true in the current warld model. Thus,
the final PGOAL results in the creation of another GOAL node. The unbound variable
«Z is treated specially and is bound to an unspecified object Objectl. (We will
explain the treatment of unbound variables in the next chapter) The new GOAL
n.ode’s pattern is thus (ON B Objectl). Its body is empty since the PGOAL statement

specified no APPLY team, and thus this action represents a primitive in the system.
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Finally, the PDENY causes (ON B A) to be inserted into the delete list of the new
GOAL node.

This - completes the expansion of the GOAL node whose pattern was
(CLEARTOP A). So the add and delete lists of the last child are augmented by the
.adds and deletes of the GOAL node. In this case, the expression (CLEARTOP A) is

added to the add list, since putting B on Objectl does clear A.

The PHANTOM node whose pattern is (CLEARTOP B) is simply copied to the

lower level.

The JOIN node in the plan in Figure 7 is now expanded. [t has no body, and so

is simply copied to the lower level

Finally, to complete the expansion of the plan, the GOAL node whose pattern is
(ON A B} is expanded. Again, it has no body (it is a system primitive) and so is
simply copied. This completes the expansion of the plan in Figure 7. The net

including the new plan is shown in Figure 8.
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F. Comparison with Other Current Work

A number of suggestions have been made in the past few years for structuring
procedural and declarative knowledge together in useful ways. Of major influence
among these has been the concept of a "frame" as a unit of organization of
knowledge, as proposed by Minsky [25], Winograd [41], and others. NOAH can be
usefully viewed as a problem solver that utilizes action frames of a restricted
variety for specific purposes. Eéch node in the procedural net is an aggregation of
information about an action, Some of its "slots" refer to particular values or
expressions; others are pointers to other frames. The body of code is a procedural
specification of detailed knowledge about the action. This procedural specification is
transformed into a partially instantiated action frame by the node expansion process,
Most of the problem solving wark is the building, analysis, and interrelating of these
action frames. Most of the executiorn monitoring work is the carrying out of

behavior as characterized by the frame structure.

The procedural net pravides a number of efficiencies over a more general
framelike representation. First, the semantics of actions are specified in a strictly
procedural form. This is a natural and concise way for the definer of a domain to
describe them. The problem solving system develops a more complex frame
representafipn itself as it goes along. Furthermore, the ways in which the action
frames are allowed to interact are very restricted. This allows a set of special
modules, called critics, to do a reasonably complste job of dealing with interactions
among the action frames. Critics will be descr{bed in much more detail in the

following chapter.
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| The information in the action frames of the procedural net can come from only
two sources: the procedural specification of the semantics of an action, and the
current environment in which the procedures are simulated. This reduces the power
of the frame-like approach, and many kinds of information that could be of grleat use
within the rich structure of the procedural net representation cannot currently be

i'nserted into the frames. Section A of Chapter Vi discusses some of these.

Although the pi'ocedural net is a unique approach to representing actions, it is
not the only one that combines both procedural and declarative aspects. In addition
to frame-like systems as described above, Scragg [32] and Rieger [30] have
impleincited representations for actions that combine both approaches. Their
representations are essentially semantic networks representing programs. The
networks can be interpreted by a special executive, and thus treated procedurally,
or they can be analyzed as a data structure, and thus treated declaratively. This
approach allows much more information to be extracted from the declarative
representation, but both the procedural and the declarative uses of the information

are much slower.

Let us now explore how NOAH uses the information stored in the procedural

net to solve problems and monitor their execution.



31

[l GENERATING PLANS OF ACTION

A. Historical Perspective

Almost every inteﬂigent operation requires ‘some degree of problem solving
ability. Most artificial intelligence programs have task-specific problem solvers built
into them. In addition, researchers have investigated the process of solving
problems per se. Quite a few approaches have been attempted over the years,
with very different characteristics. This section will attempt to discuss the differing

approaches by casting them into a common paradigm.

Problem solving may be thought of as a process of searching through a space
of possibilities for a point (a solution state) or path (a” plan) that satisfies an

externally imposed criterion (the problem). Let us define the solution space to be

that subset of the space of possibilities within which the planner believes the plan
to lie. (There is, of course, no guarantee that the solution space does in fact contain
the solution.) Within this framework, we may define the process of problem solving
as a development of constraints that progressively narrow the solution space.
When a problem solver is first given a problem, the solution space is as large as the
space of_pos'sibilities. The problem solving task is to progressively narrow the
solution space. This is dona by applying constraints to the best current solution

space.

This formulation of the task of problem solving is far broader than the more

traditional one of performing trial-and-error search through the solution space to



32

find a path to a given goal. The use of search strategies is seen here as simply one

approach to constraining the search space.

Many df the successful general problem salving systems {for example, GPS [8]
and STRIPS [13]) used a search strategy called means-ends analysis. It works by
examining the goal state and determining a subset of operators that might lead to
the goal state. The preconditions of these relevant operators constrain the solution
path to traverse particular subgoal states, which in turn can be examined. The
system works backward until a path is defined from the initial state to the goal

state.

The trouble with a pure means-ends analysis strategy is that the planner often
has no good source of information about which relevant operators are most likely to
lead to a solution.. So the strategy is subject to the effects of a combinatorial

explasion of choice points as the length of the plans becomes nontrivial.

The thrust_ of much of the work on general problem solving systems in the last
few years has been on developing additional ways of constraining the search daone
by a simple means-ends analysis algorithm. These approaches include debugging
almost-right plans, hierarchical planning, extensive constraint analysis, and

progressive plan modification.

The basic idea underlying all of these approaches is that it is too expensive
for a planner to analyze all the constraihts on a problem solution at one time. What
these approaches do, in one way or another, is to use only a small subset of the

possibie constraints to reduce the solution spéce as quickly as possible, Then a
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final solution can be found by an expensive evaluation of all the constraints. Since

the solution space is small, the expense of the detailed search is easier to bear.

There is a potential danger in this approach, though. The pure means-ends
analysis strategy has a well-defined bound on its worst-case behavior. The chaining
together of actions into partial plans is done in a basically breadth-first manner, and
so an n-step plan will be found no later than after all plans of n or fewer steps.
The new approach has no bound on its worst-case behavior. If the cheap analysis
constrains the solution space to a portion of the search space that doesn’t contain a
solution, the planner may do arbitrary amounts of work before it discovers the
mistake. Thus, in addition to using as little information as poessible to constrain the
solution space, a sophisticated planner must avoid constraining the solution space
prematurely on the basis of insufficient infarmation. Furthermore, it must have a
means for dealing with tHe possibility that the high level constraints have eliminated

the solution to the probiem from the solution space.

Let us now take a brief look at some of the major new efforts in problem
solving in the light of this analysis. A more detailed comparison will be presented

after NOAH’s planner has been explained in detail.

The HACKER system for planning in the blocks world [35] cheaply narrows the
solution space by making a "linear assumption." That is, the system assumes that to
solve a conjunction of goals, each one may be solved in turn. This won’t provide a
solution in most cases, of course, but it does provide a lot of information about how
the pieces of the carrect solution would act together. By making relatively minor

modifications to a cheaply produced first guess, the system is able to develop
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solutions to problems rather directly. HACKER often overconstrains the solution at
first, but it has a reasonable model of what the higher level constraints do and so

can recover from the praoblem.

The ABSTRIPS planning system [31] progressively narrows the solution spaca
by solving the problem using simpler, less constrained operators. When a solution is
found, the system will have defined islands in the space of possibilities that must be
traversed if the problem can be solved by a detailed version of the higher level
plan. The system now solves the smaller problems of navigating between the
islands, using operator descriptions that are more constrained. This process
continues until the fully constrained operators are used. By solving a hierarchy of
éimpler problems, ABSTRIPS is relatively insensitive to the combinatorial explosion.
But its model of the relationships among the various levels of plan is contained in its
control structuré in an unusable way. Thus ABSTRIPS is prone to flounder if the

higher level solutions were wrong.

NOAH performs its planning in a hierarchical fashion like ABSTRIPS, but the
hierarchy is determined by the calling structure of the SOUP code rather than by a
predetermined definition of operator hierarchies. In addition to trying to reduce the
solution space with as little work as possible, NOAH tries very hard not to
overconstrain the sclution space. It uses the structure of the procedural net to
retain information about available 6ptions in the developing plan. Plans are stored in
the net as a partially ordered time sequence, rather thqn as a total ordering that
traditional problem solvers use. In this way the system avoids constraining the

order of actions uniess there is good reason to do so. Furthermore, the hierarchical



GENERATING PLANS OF ACTION ' 35

nature of the procedural net itself allows the system to retain a good deal of
information about the structure of the developing plan. Thus, if the system should
find that it has overconstrained, sufficient information has been saved in a readily

‘usable form so that intelligent recovery can take place.

B. The Basic Planning Algorithm

Initially, NOAH is given a goal to achieve. NOAH first builds a procedural net
that consists of a PLANHEAD node and a single GOAL node to achieve fhe given goal.
This node’s body is cor-iructed from the value of the system parameter SALLFNS
and from a set of general-purpose functions for dealing with expressions beginning
with AND, OR, and NOT. The value of SALLFNS is set by the definer of the domain
to a list of .aH the top-level SOUP functions in the domain. This single node
represents a plan to achieve the goal at a very high level of abstraction. This one-

step plan may then be expanded.

The planning algorithm of the NOAH system is simple. Its input is a procedural
net. It expands the most detailed plan in the net by expanding each nede of the
plan in turn. In addition to building a detailed model of the effects of each action in
the plan, the expansion of each node will produce child nades. Thus by expanding

the plan, a new, more detailed plan will be created.

The individual subplan for each node will be correct, but there is as yet no
guarantee that the new plan, taken as a Kwhole,.will be correct. There may be
interactions between the new, detailed steps that render the overall plan invalid.

For example, the individual expansions involved in generating the plan in Figure 2¢
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from that in Figure 2b are correct, yet the overall plan is invalid, since it allows for

painting the ladder before painting the ceiling.

Before the new detailed plan is presumed to work, the planning system must

take an overall look at it to ensure that the local expansions make global sense

together. This global examination is provided by a set of critics. The critics serve
a purpose somewhat similar to that of the critics of Sussman’s HACKER [35), except
‘that for NOAH they are constructive critics, designed to add constraints to as yet
unconstrained plans, whéreas for HACKER they were destructive critics whose

purpose was to reject incorrect assumptions refiected in the plans.

The algorithm for the planning process, then, is as follows:

(1) Expand the-most' detailed plan in the procedural net. This will have the
effect of producing a new, more detailed plan.

(2) Criticize the new plan, performing any necessary reordering or elimination
of redundant operations.

(3) Go to Step 1.

~ Clearly, this algorithm is an oversimplification, but for now we may imagine that
the planning process continues until no new details are uncovered. As other

features of NOAH are described, modifications to this algorithm will be presented*.

~ *One simplification that is retained in the current version of NOAH is that all the

children of a node will be placed in the partial ordering ahead of all the children of a
subsequent node. This simplifies the operation of the critics, but may cause NOAH
to fail to find a valid plan where one exists.
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C. Constructive Critics

The concept of constructive criticism is central to NOAH’s approach to problem
solving. This section will provide a justification for the reliance on the criticism
approach. Then, examples of general-purpose and domain-specific critics will be

presented.

I. The Rationale Behind Criticism

The constructive critics of NOAH constitute that portion of the system
that concerns itself with the interactions among individual actions. The architecture
of the NOAH system is unusual in that this function is explicitly separated from other

aspects of the problem solving pracess. What advantages does this provide?

The major reason for the use of critics lies in the nature of hierarchical
planning. The basic strategy of hierarchical planning is to create a cheap, if
incarrect, plan by throwing much informatioﬁ away. Then the cheap plan is expanded
into a more detailed plan. The process of expansion continues, building ever more
detailed plans until a sufficiently accurate one has been built, The process of
expanding a plan to a greater level of detail can be made very simple. For NOAH,
the expansions to a greater level of detall are all specified only in terms of local
considerations. Since the considerations are local, the search involved in any
partic‘ular expansi;)n will be relatively small. But since all the expansions are
performed strictly on local considerations, a global overview is necessary to ensure
that the individual expansions make sense together. It is much more efficient to do
a series of local searches, followed by a global search for specific types of

interactions, than to perform a global search at each step.
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The criticism approach also allows for much greater modularity within the
semantics of the task domain. If the model of each action had to include information
about all the potential interactions with other actions, it would be impossible to
encode domains of any complexity. The number of individual interactions will tend
to grow much faster than the number of individual actions. Inserting a model of a
new action would entail specifying many interactions along with the new action.
Even worse, it would require revising the models of many actions that had already

been modealled.

The use of critics allows individual actions to be specified without regard
for their effect on evefy other action in the domain. A computer e>_<pert can thus be
built from a collection of more easily constructed micro~experts rather than as a
manolithic complex entity. Looked at another way, it allows information about a kind
of interaction to be specified in a single module rather than being distributed

throughout all the individual actions.

Another advantage of the criticism approach is that it segregates those
constraints derived from local considerations from those that arise from more global
restrictions. Thg local restrictions that are based simply on a particular action’s
semantics can be encoded directly into the SQUP code describing the action. These
constraints will then be applied well before the more global ones that the critics
provide, The search space can thus be reduced as much as possible by relatively
cheap, local constraints without forcing possible wrong choices from premature

application of global constraints.
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2. General Purpose Critics

a. T‘he "Resolve Conflicts" Critib -=- The Resolve Conflicts critic examines

those portions of a plan that represent conjuncts to be achieved in parallel. In
particular, it looks at the add and delete lists of each node in each conjunctive
subplan. If an action in one conjunct deletes an expression that is a precondition for
a purpose™ in another conjunct, then a conflict has occurred. The purpose is
endange‘red because, during execution, its precondition might be negated by the
action in the parallel branch of the plan. (An implicit assumption being made here is
that all of a purpose’s preconditions must remain true until the purpose is
exelcuted.) The conflict may be resolved by requiring the endangered purpose to be

achieved before the action that would delete the precondition.

For example, the painting plan depicted in Figure 2c contains a conflict.
"Apply paint to iadder" will efféctively delete "Has ladder," which is on the add list
of "Get 'Iadder.“ In such a situation, a conflict would occur, since "Has ladder” is a
precondition of "Apply paint to ceiling” The conflict is denoted in the pictorial
representation by a plus sign (+) over the precondition and a minus sign (-) ove} the
step that violated it. The conffict can be resclved by requiring that the endangered
subgoal ("Apply paint to ceilihg") be done before the violating step ("Apply paint to
ladder").,l If the conflict were resolved in this manner, the resulting plan would

appear as in Figure 2d.

A more difficult conflict to deal with occurs if each of two conjunctive

purposes has a precondition that denies the othe‘r purpose. This is a special case of

*'Pyurpose” is used in the technical sense defined in Chapter I, Section B.
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the kind of conflict described above. This conflict is not linearizable, since no linear
order of the purposes will achieve the overall goal. It is treated by a special critic,

described in Subsection d below.

Another type of conflict occurs if an action deletes an expression that is
a precondition for a subsequent purpose. In this case, the precondition must be re-

achieved after the action that deletes it.

Conflicts of this type are very easy to spot. The critic simply builds a

table of multiple effects (which we shail call a TOME). This table contains an entry

for each expression that was asserted or denied by more than one node in the
* current plan. A conflict is recognized when an expression that is asserted at some

node is denied at a node that is not the asserting node’s purpose.

Note that a precondition may legally be denied by its own purpose. For
example, to put Block A on Block B, B must have a clear top. This precondition will

be denied by the action of putting A on B.

'b. The "Use Existing Objects" Critic -- In addition to specifying the right

actions in the right order, a complete plan must specify the objects that the actions
are to manipulate. For NOAH, this specification is accomplished by binding the

unbound variables {those prefixed by a left arrow) in the PGOAL statements of the

© SOUP code.

During the course of planning, NOAH will avoid binding a variable to a

specific object unless a clear best choice for the binding is available. When no

specific object is clearly best, the planner will generate a formal object to.bind to
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the variable. The formal object is essentially a place holder for an entity that is as
-yet. unspecified. The formal objects described here are similar in spirit to those
used by Sussman in his HACKER program [35], and to the uninstantiated parameters

in relevant operators as used by ABSTRIPS [31].

The strategy of allowing actions with unbound arguments to be inserted
into & plan has several advantages. First, it enables the system to avoid making
arbitrary, and therefore possibly wrong, choices on the basis of insufficient
information. Furthermore, it allows the system to deal with world models that are

only partially specified by producing plans that are only partially specified.

. However, after a plan has been completed at some level of detail, it may
often be improved by replacing a fo}'mal object by some object that was mentioned
elsewhere in the plan. The Use Existing Objects critic will replace formal objects
by real ones whenever possible. This may involve merging nodes from different

portions of the plan, resulting in reordering or partial linearization.

For example, a more detailed expansion of the painting plan might specify
putting the ladder at PlaceQ0l to paint it, and at Under-Ceiling for painting the
ceiling. The Use Existing Objects critic would optimize the plan by replacing

Place001 with Under-Ceiling.

c. The "Eliminate Redundant Preconditions" Critic =~ During the simulation

phase of the planning process, every precondition that is encountered is axplicitly
stored in the procedural net. This is so that the critics will be able to analyze the

complete precondition=-purpose structure of each new subplan. But after the other
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critics have done their work, and the plan has been altered to reflect the
interactions of all the steps, the altered plan may well specify redundant

preconditions.

For instance, in our painting example, "Get paint" appears twice in the
plan. This critic recognizes the redundancy by examining the same TOME that was
used by Resolve Conflicts. The extra preconditions are eliminated to conserve

. storage and aveid redundant planning at more detailed levels for achieving them.

d. The "Resolve Double Cross" Critic -- A special kind of conflict occurs

“when each of two conjunctive purposes denies a precondition for the other. This
kind of conflict, which we call a "double cross,” cannat in general be resolved by any
linearization of the paraliel subplans. The system must be creative and propose

additional steps that will allow the two purposes to be aéhieved at the same time.

A number of approaches are possibie for dealing with this case. At the
worst, the system could simply replan to achieve the conjunction, with the constraint
- that the plan had to be linear. A better approach is to try to use as much as
possible of the existing plans. The mutual conflict could be resolved by altering
each subplan to be impervious to the effects of the other subplans. Another
possibility is to make each subplan innoéuous to the others. The latter approach has

been followed here.

The strategy used in making eackh subplaﬁ innocuous is to look at the
assertions or denials that led to the conflict. The system determines what variable

bindings during the execution of the SOUP code caused the particular assertion or
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denial to be made. Then, it.inserts appropriate stéps in the plan to ensure that the
variables are bound differently at the time of the assertion or denial®*. Thus, a
different expression will be as#erted or denied, so the particular conflict that
occurred last time won't happen again. The remainder of the plan must be expanded
again, taking the new steps into account, to be sure that no new conflict was
introduced in the course of fixing the old one. If a new conflict is introduced, the

current system gives up.

e. The "Optimize Disjuncts” Critic -- The mechanism for choosing a

particular program to apply to the pattern of a GOAL node permits a kind of
disjunctive processing. A choice among disjuncts is made at the time the node is
expanded, and the current version of the system never deals with the other
alternatives again. But there are times when a choice must be deferred until more
information is devéloped at more detailed levels of the plan. For this casé, a POR

statement is provided in SOUP, to allow the system to deal with explicit disjuncts.

Parallel subplans are used to represent disjunctive subgoals (for
example, to paint Ithe ceiling, get paint and either a ladder or a table) as well as
conjunctive subgoals. After the plan has been expanded to a certain depth, it may
become evident that one disjunct is superior to.the others by the nature of its
interaction with the other actions in the plan. The QOptimize Disjuncté critic builds
and examines alternative TOMEs for each choice among disjuncts (or each

combination of choices, if there is more than one disjuhction). It one choice is found

*In general, determining what steps are appropriate is very difficult, and requires a
full understanding of the SOUP code. The current implementation can only deal with
variables that were bound by an explicit data retrieval statement.
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o substantially minimize the number of actions in the overall plan, it is selected and
the rest of the disjunction is ignored.‘ The measure of the number of actions is
crude, and for more careful implementations a measure with a more semantic basis

(e.g., estimating the difficulty or cost of the overall plan) would be preferred.

3. Task-Specific Critics

In addition to the general-purpose critics described above, the NOAH
system allows user-specified critics as a part of the definition of a task domain,
Just as it makes good sense to separate local constraints from global ones having to
do with general problem solving issues, it alsc makes good sense to allow the
specifier of a task domain to encode these classes of constraints separately. Let us
examine a few examples of portions of knowledge about a domain that would be
difficult to express or deal with if they could not be expressed as critics. Examples

are presented here from the CBC domain.

a. Tool Gathering -- Many of the operations from the C8C domain require

the use of tools. Each operation that requires tools contains code that specifies their
acquisition. But it makes global sense to acquite a number of tools in a single trip
to the tool box. So a task-specific critic can be defined to reorder the steps of the

plan to aggregate the tool gathering aoperations.

b. Limitations of an Apprentice -- The human apprentice who is

diagnosing and repairing equipment can only be asked to use two hands, and can
only be asked to be in one place at one time. These constraints are not related to
any particular actions, but are constraints on the overall plan that the apprentice is

asked to carry out.
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For example, at one level of detail the apprentice may be asked to
"Connect the cover to the frame." In more detail, he might be asked to "Position the
cover on th§ frame, and then attach the cover to the frame." At this level of detail,
the plan is fine as stated. But if each step of this plan is expanded, the resulting
ptan would be "Align the cover on the frame so that the Eover is right-side-up and
the screw holes Iiné up. Then get a screwdriver, and screw in each of the screws.”
The plan at this level is ridiculous, since the act of aligning the cover will be undone
when the screwdriver is fetched. So a critic that is based o.n a simple model of the
physical limitations of a human would reorder‘this plan so that the screwdriver is

fetched befare the cover is aligned.

D. Using the Nonlinear Representation

We have just described in detail NOAH's approach to problem solving: the
‘progressive expansion and criticism of nonlinear plans. This section will present a
number of examples of blocks problems that NOAH’s planner can solve. The first
example will be presented in detail. The others will be di.splayed graphically, and

only points af special interest will be discussed in the text.

A complete listing of the SQUP code used to define the semantics for this

domain is presented in Appendix B.
1. Three Blocks

We are now ready to see how NOAH solves a simple problem. In the
initial state, Block C is on Block A, and Block B is by itself. The goal is to achiave 3
new configuration: Block A is on Block B, and Block B is on Block C, as shown in

Figure 9.
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A

Cc B

A B Cc

Initial State: Goal State:
(ON C A) {AND{ON A B}
{(CLEARTOP B) (ON B C))

(CLEARTOP C}

FIGURE 9 EXAMPLE PROBLEM

The initial state is expressed to the system as a set of QLISP assertions:
(ON C A) .
(CLEARTOP B)
(CLEARTQP C).

NOAH is invoked with the goal: (AND (ON A B) (ON B C}).

The system builds an initial procedural net that consists of a single GOAL
node. The node is to achieve the given goal; its body is a list of the task-specific
SOUP functions, in this case CLEAR and PUTON., It then applies the planning
algorithm to this one-step plan, which is depicted in Figure 10a. The conjunction is
split up, so that each of its conjuncts is achieved independently. PUTON is the
relevant function for achieving both conjuncts, but thel system does not immediately
invoke PUTON. Rather,.the system builds a new GOAL node in the praocedural net to
represent each invocation. The nodes are to achieve (ON A B) ;)r (ON B C}, and
hqve PUTON as their body. The original plan has now been completely expanded to
a greater [evel of detail, and so the critics are applied. At this level, they.find no

problems with the plan that was generated. The new plan is shown in Figure 10b.
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LEVEL 1
Achieve (AND{ON A B)(ON B C})

(a)

LEVEL 2
Achieve {ON A B)

N
Achieve {ON B C)/
{b)

/

—

LEVEL 3
(Before Criticism)

Clear A \ 3
S J Put A on B

S~

4 +
\ 6
SJ Put B on C

Clear B \
2
S

Clear C
5
{e)
LEVEL 3
(After Criticism A Clear A
by Resoive Conflicts) S J Put A on B

S J Put B on C

(d)

FIGURE 10 PLANS FOR EXAMPLE PROBLEM
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LEVEL 3
(After all Criticism)

/7 Clear A
S J Put A on B
S J HPut B on C
(e
LEVEL 4
{Before Criticism) +
Clear C Put C onOBJECT1
S \ J Put A on B
Clear B —/
S J HPut B on C
{f)
LEVEL 4
{After Criticism
by Resolve Conflicts)
+
/—(Clear C}— Put C onOBJECT‘I)
S Put A B
GDt eIt
S : J Put B on C
(g
LEVEL 4
{After all Criticism)
Clear C Put C onOBJECT ] \
S J Put B on C— Put A on B
{hj
FIGURE 1G PLANS FOR EXAWMPLE PROBLEM (Ceoncluded}
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The new plan is now expanded, When the GOAL nodes for achieving (ON
A B} and (ON B C) are simulated, PUTO-N is applied to each goal expression. PUTON
causes the generation of a new level of GOAL nodes. When the entire plan has
been expanded, the resulting new plan appears as in Figure 10c. The nodes of the

plan are numbered to aid in explaining the actions of the critics.

The critics are now applied te the new plan. Resclve Conflicts generates
a TOME, a'table of all the expressions that were asserted or denied more than once
during the expansion. The table is shown in Figure 11a. This table is then pared
down by eliminating from consideration thaose preconditions that are denied by their
own purposes. For example, (CLEARTOP C) is a precondition for the purpese (ON B
C), so it is not a conflict that achieving (ON B C) at Node & makes (CLEARTOP C)
faise. Now, any expression for which there is only a single remai'ning effect is
removed from the table. The resulting table, shown in Figu.re 11b, displays‘ all the

conflicts created by the assumption of nonlinearity.
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FIGURE 11
"TABLE OF MULTIPLE EFFECTS FOR EXAMPLE PROBLEM

{(Node numbers refer to Figure 10c.)

11a - Qriginal Table
CLEARTOP B: Asserted - Node 2 ("Clear B")
Denied - Node 3 ("Put A on B")
Asserted - Node 4 ("Clear B")
* CLEARTOP C: Asserted - Node 5 ("Clear C")
Denied - Node 6 ("Put B on C"}
11b ~ Refined table

CLEARTOP B: Denied - Node 3 ("Put A on B")
Asserted - Node 4 ("Clear B")

Resolve Conflicts now resolves the conflict by reordering the plan to
place the endangered purpose [the node achieving (ON.B C)] before the violating

step [the node achieving (ON A B)]. The transformed plan is shown in Figure 104,

Since no formal objects were generated at this level of detail, Use
~ Existing Objects does not transform the plan further. Eliminate Redundant
Preconditions is now applied, and the resulting plan is shown in Figure 10e. Note
that the major restriction in the solﬁtion to th.e‘problem, that B must be placed on C
before A is placed on B, has been incorporated into the plan. This has been

accomplished directly, constructively, and without backtracking.
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The critics having been applied, the system expands the new plan. This
re‘sults in the generation of a new, yet more detailed plan, shown in Figure 10f. The
critics are then applied. An analysis similar to that described above enables
Resolve Conflicts to discover that (CLEARTOP C) might be violated when achieving
(ON B C). Thus, the plan is rearranged, as shown in Figure 10g, so that (ON C
Objectl), the endangered purpose, is achieved before (ON B C).

Use Existing Objects again finds no formal cbjects that can be unified
with existing ones. After Eliminate Redundant Preconditions cleans up the plan, it
appears as in Figure 8h. The final plan is: Put C on Objectl; Put B on C; Put A on B.
Essentially, the plan is now completely linearized. The planning system has chosen
the correct ordering for the subgoals, without backtracking or wasted computation.
By avoiding a premature commitment to a linear plan, the system never had to undo

a random choice made on the basis of insufficient information.
2. Four Blocks

The solution to this problem illustrates the use of the "Use Existing

Objects" critic.
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A
B
C D C
A B D
Initial State: Goal State:
(ON C A) (AND{ON A B)
(ON D B) {ON B C)
(CLEARTOP C) {ON C D)}
(CLEARTOP D)
LEVEL 1 Achieve {AND(ON A B}{ON B C}ON C D)

The conjunctive goal is split inte parallel goals.

Achieve {ON A B)

LEVEL 2 S Achieve {ON B C)

~N 17

Achieve {ON C D)
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LEVEL 3
(Before Criticism) ) Clear AR -
S J MPut A on B
/
Clear B
+
Clear B -
S S J Put B on C J
Clear C
++
S J Put C on D

Resolve Conflicts notices two cases of a precondition (+ and ++) negated

by parallel operations (- and --, respectively).

LEVEL 3

{After Criticism J/ Clear A _

by Resolve Conflicts) S J Hput A on B
Clear B

/+1(\\

Clear B -)
S S J Put B on C
Ehw
++ )
J Put C on D

Eliminate Redundant Precanditions cleans up the plan.
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LEVEL 3

(After all Criticism)
Clear A
Clear B

\

Put A on B

Put B on C

S

J

Put Con D

~./

LEVEL 4
{Befare Criticism}

+

Clear C Put C on OBJECT1
+

+

\r)

/(Clear D

Put D on OBJECT2\

\

Put A on B

Put B on C

LEVEL 4
{After Criticism
by Resolve Conflicts)

Clear a'- Put C on OBJECT1

/(CIearB)‘ Put D on OBJECT2)

—Put B on C

J

Put C on D

e

/—PutA on B
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Use Existing Objects notices that the plan can be simplified by unifying
the formal object, Objectl, with Block D. The nodes that refer to phtting ConD
and on Object! are merged.

LEVEL 4

{After Criticism
by Use Existing Objects)

Clear C

/(Ciear D {Put D on OBJECTZ)

Put A on B

y - Put B on C
o) /

J p=Put Con D

LEVEL 4
(After all
Criticism)

/<Clear D)— Put D on OBJECT?2 \
N Clear ¢ /

The final plan is: Put D on Qbject2, Put C on D, Put B on C, Put A on B.

J HPut C on DF~Put Bon C—Put Aon B

3. Creative Destruction

This problem can only be saolved by undoing a subgoal that is already

achieved.,
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A

A B

B Cc Cc

Initial State: Goai State:
(ON A B) {AND(ON A B)
(CLEARTOP A} {ON B C))

{CLEARTOP C)
LEVEL 1 Achieve {AND(ON A B}{ON B C)H

Achieve {ON A B) >\

LEVEL 2 ) J
Achieve (ON B C)

‘The first conjunct is a PHANTOM goal, since it is already true in the initial

world model.

LEVEL 3 . +
(Before Criticism) Achieve (ON A B)

/ Clear B
S J Put B on C
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Resolve Conflicts notices that one node (-) deletes a precondition for &

subsequent purpose. The precondition in this case is (ON A B), and the purpose is

the initial conjunctive goal. The system therefore alters the PHANTOM goal (+) to

become a genuine goal, to be achieved in time for the subsequent purpose.

LEVEL 3

{After Criticism)

LEVEL 4

(Before Criticism)

+

/7 Achieve (ON A B)

—

Clear B
\5/ \J PutBonC/

!

N\

Clear B

\T/

Clear A

N 7

Put A on OBJECT1

Put A on B\

Put B on C

/

Clear C

d

Resolve Conflicts notices that (CLEARTOP B) is asserted by one node{+)

and.deleted by anothér(-). it therefore reorders the plan.
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LEVEL 4
(After Criticism
by Resolve Conflicts)

_

S J Put A on B

\Clear B (_

s ' .
/<Clear A Put A on OBJECT1
S / J —PutBonC
( Clear C }
Eliminate Redundant Preconditions cleans up the plan.
LEVEL 4

{After Criticism}

‘CIear A HPut A on OBJECT1

S J Put B on C Put A on B

| Clear C ; /

The final plan is: Put A on Objectl, Put B on C, Put A on B,

s

4, Lumpy Blocks: Dealing with Disjunctions

This problem is designed to show a simple case of disjunctive

optimization,
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-

A
L
A B B
Initial State: Final State:
(CLEARTOP A} {(AND{ON A B)
(CLEARTOP B) {STABLE C)

(CLEARTOP C)

LEVEL 1 Achieve (AND{ON A B){STABLE C)}

- The conjunctive goal is split into parallel goals.

LEVEL 2

Achieve (ON A B)

1 Achieve (STABLE C)

The disjunctive subgoal is split up.

S8
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LEVEL 3

LEVEL 4
(Before Criticism}

OR

Clear A
S J - Put A on B
Clear B
Achieve {(ON C A}

OR OR
S J
Achieve {ON C B)

Clear A

S J Put A on B
Clear B
Clear A

S J —Put Con A
Clear C
Clear B

S J [ pPutconB

Clear C
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The TOME for the "Put C on A" Vdisjunct contains two entries concerning
"CLEARTOP B." The TOME for the "Put C on B” disjunct contains three entries for
this expression. So, on a purely syntactic basis, the former disjunct is chosen. The
system has no real understanding that the latter cheoice would require undcing a

needed precondition.

LEVEL 4
{After Criticism by ""Optimize Disjuncts”
Clear A
| S J Put A on B
Clear B
S J
Clear A
8 J —{Put Con A
Clear C \
CR OR
5 JoJ
Clear B
S J Put C on B I
Clear C

The other critics update this plan as before.
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LEVEL 4
{After All Criticism)

S Clear B J = Put Con A

J — Put A on B

The final plan is: Put A on B; Put C an A

5. Swapping Blocks: Nonlinearizable Interactions

This problem is a blocks world equivalent of the problem of interchanging

the contents of two registers.

C D D C

A B A B
Initial State: Final State:

{ON C A) {AND{ABOVE D A)

{ON D B) (ABOVE C B))

(CLEARTOP C)

(CLEARTOP D} TA-740522-42

'LEVEL 1

Achieve
{AND{ABOVE D A}ABOVE C B))
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LEVEL 2
Achieve {ABOVE D A)
S J
Achieve {ABOVE C B)
TA-740522-44
LEVEL 3
{Before Criticism) + _
Clear 0)7 Place DO Above A
) J

++
Clear—C>7 Place C Above B

The purpose of each branch negates a precondition in the other branch.
Thus, no simple linearization of the plan will eliminate the conflict, The Resolve
Double Cross critic attempts to make each branch innocuous to the other. The critic
determines, by examining a history of variable bindings, that the reason the "Place D
above A" step caused "CLEARTOP C" to be deleted was that the variable «TOP was
bound to C when the query (PIS (ON A «TOP)) was executed. The conflict would
not occur if the PIS statement had returned a different value. So the critic inserts a
new step in the plan before the point where the PIS would be executed. A sirilar
operation is performed for the other branch. The rest of the plan is expanded

again, so that the new expansién reflects the effects of the newly inserted step.
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LEVEL 3
{After Criticism)

Achieve (NOT(ON C A))

J Put D above A
J
Achieve (NOT{ON D B))
J Put C above B
Clear C
LEVEL 4
(After Criticism)
Put C on OBJECTI1
J — Put D above A
S J
Put D on OBJECTZ2
J Put C above B

Clear C

The plan, in its nonlinear form, is now completed. Th_ere is no reason to
choose, at planning timse, whether to wark on putting D above A, or C above B first.

However, once an arbitrary committment to an ordering is made during execution,
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the system can further simplify the plan* Let us suppose "Put C on Objectl" was

chosen. After it is executed, the portion of the plan that remains to ba executed is

as shown below,

LEVEL 4
Executed Clear D)— Put D above A
( Put C on OBJECTI ) | S Put D on OBJECT2 ;
J = Put C above B
Clear C

*. Execution may be thought of as a process of pulling the nonlinear plan
through a hole that can only accept one step at a time. As each step is pulled
through, the remaining plan is deformed into a new.structure. The new form may be
criticized just as during planning. In this case,. the new structure is one which the

Use Existing Objects critic can transform into a simpler one.

LEVEL 4

Executed

( Put C on OBJECTI )—~‘ S

The rest of execution proceeds normally. The plan as executed is: Put C

Clear DH Put O above A

J -—{ Put C above 8

Clear C

on Objectl, Put D above A, Put C above B.

*The process of execution-time criticism has not been implemented in the current
version of NOAH.
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E. Using the Hierarchical Representation
1. Introduction

Thus far, all the examples that have been presented have had the
property that the higher levels of planning successfully narrowed the solution space
to include the solution. Now we shall present an example in which this is not the

case, and some examples in which the system deliberately avoids narrowing the

solution space.

2. Hierarchical Kernels

NOAH restricts the solution space on the basis of a cheap and
nonexhaustive analysis of high-level constraints. Therefore, it must have a
mechanism for checking as more detailed analyses are performed that the solution is
reachable within the restricted solution space. There is a danger that the detailed
expansion of a preceding action will obliterate a higher level precondition of a
subsequent action. Furthermore, there is no way to know if a problem like this will
arise until the expansion is actually carried out. For example, consider a pair of
plans to set up experiments to test a monkey’s problem solving behavior. One plan,
"Acquire bananas, Put bananas on floor, Put box in corner," can be expanded to
more detail with no difficulty. But consider a very similar plan: "Acquire bananas,
Hang bananas on hook, Put box in corner.” There is little to distinguish the two plans
at the level of detail that they have been presented. But the second one cannot
successfully be expanded by expanding each step individually. The expansion of the

"Hang bananas" subplan will create the subplan: "Move the box under the hook,
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Place bananas on hook." A further expansion will include setting down the bananas in
order to push the box. This will enable the bo‘x to be successfully moved, but it
will leave t'h‘ings in a state such that the subplan to place the bananas on the hook
will no longer work (since th_e bananas are no longer in hand). Conflicts of this sort
can be spotted by checking that the higher level plans‘are all being carried out

successfully within the evolving plan at the current level.

In fact, the higher level plans do not need to be checked in their entirety.
The system needs to check only a subset of the higher fevel actions as each node is

being expanded. We shall call this subset the hierarchical kernel of the node being

expanded. The check of the kernel is done by checking the effects of the preceding
siblings of each ancestor node of_ the one currently being expanded. The preceding
steps at the top level are checked to make sure that their effects are true in the
‘current world model. If they are, then the system is assured that the highest level
plan is being carried through at the current level. That is, all the steps in the
highest level plan, up to the current node’s top-level ancestor, have been carried

out at the current level.

Associated with the tob-level ancestor is its expansion into a subplan,
one of whose steps is also an ancestor of the current node. The steps in this
subplan that precede the ancestor are checked to make sure that their effects are
reflected in the bottom-level plan. If so, then the portion of the subplan preceding
the ancestor has worked at the bottom level and so the ancestor at this level is still
appropriate. .The ancestor’s subplan is checked in a similar way, and the operation

proceeds recursively until the node about to be expanded is reached. If all the
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elements of the hierarchical kernel are present in the current world model, then the
current node may be expanded with confidence that the resulting subplan will be

relevant for achieving each higher level plan.

Formally, then, for a given node, the kernel consists of the node’s
preceding siblings, and the preceding siblings of all its ancestors. The preceding
siblings of a given node are all the fellow children of the node’s parent that precede
the given node in time. For example, Figure 12 shows the kernel of an action in the

detailed expansion of a procedural net for the experimenter and bananas example.

Acquire Hang bananas
bananas on hook
Fd \\
~ ~
.o, \\ \u
Go to Buy Move boax Put bananas
Stare Bananas under hook on hook
\\
rd ~ ~
7 N N
Put down Push box

|
-

bananas [ |under hock

FIGURE 12 A KERNEL FOR THE "EXPERIMENTER AND
BANANAS PROBLEM

In the example, the problem solver is about to expand the "Put bananas
on hook” node at the second level of the plan. Before ‘doing so, it will check the
" node’s kernel. The effects olf the first node at the top level, namely that the
ekperimenter has the bananas, is not true in the world model of the point in the

new plan where the expansion will go. In the diagram, this point is indicated by the



GENERATING PLANS OF ACTION : 69

exclamation mark. The check of the hierarchical kernel has thus revealed a flaw in

the simple exbansion of the plan.

" When a check of the kernel reveals a problem, there are several
alternative ways in which the problem solver can attempt to correct it. If there
were arbitrary choices made at previous points in the expansion (for instance, the
choice of one function in a GOAL node’s body when others would also be applicable),
then the alternatives to those choices could be explored. In our example, the
experimenter might-be able to call upon his very tall assistant to place the bananas
on the hook. Another way to correct the plan is simply to plan to reestablish the
purpose of the node whose effects are no longer preserved. In our example, this
corresponds to inserting a new GOAL node at the exclamation point to achieve "On
hook bananas.” The current NOAH system uses this second approach, simply because
it works on the problem.to be presented below. A more sophisticated system
would require a level of control to integrate attempts to solve the problem using

both approaches, and other approaches as well.

The use of kernels to ensure that a detailed plan is still on the path
sketched out at a higher level can be viewed as the program-generation analogue of
the concept of "hierarchical debugging” suggested by Goldstein [14] for a program-

understanding task.

A successful check of the hierarchical kernel does not guarantee that a
problem will not arise. (The kinds of interaction that will be missed are discussad in
Section A of Chapter V) It is too expensive computationally to check every

oredicate required by every action. This was a major failing of the STRIPS-PLANEX
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system, The kernel checking déscribed here is an attempt to use the structure of
~ the procedural net to perform a minimal set of checks that will catch most unwanted
in‘feractions. This section does not propose an. approach to solving problems that is
expected to be generally correct and applicable. Rather, it is a simple

demonstration of a kind of use to which the power of the procedurél net can be put.

‘a. Using the Kernel: The "Keys and Boxes" Problem -- The “"keys and

boxes" problem has been proposed by Michie [23] as a "benchmark" problem for

problem solving programs. The problem is as follows:

\ In a room there is a robot with no sensory ability whatsoever. Four
places are defined in the room: BOX1, BOX2, TABLE, and DOOR. OQutside the room
there is one place: QUTSIDE.

At DOOR there is a non-empty pile of red objects.

At BOX1 or BOX2 {we dont know which) there is a non-empty pile of

keys, all of which fit the door. We don’t know what is at the other box.
TABLE is empty.

The robot has three passible actions:

{1) Pick up -~ If the robot is holding something, this action has no effect.
Otherwise, some object at the location will be in the robot’s hand
when this action is completed.

(2) Put down -- If the robot is not helding anything, this action has no
effect. Otherwise, the object in the robot’s hand is added to the pile

at the current location of the robot.
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(3) Go to X -- The robot’s location becomes X. If X is OUTSIDE, there
must be a key in the pile at DOOR or this action has no effect.

The robot has no way to tell if any action had an effect or not.

Initially the robot is at an undetermined place in the room, and it is
unknown if anything is in its hand. Figure 13 suggests the initial configuration. The

problem is to develop a set of actions that will ensure that a red object is OUTSIDE.

Initial Situation:

BOX BOX
key key 277?72
key key 2?27
ROBOT OUTSIDE
red
red
TABLE red L
DOOR
T

FIGURE 13 THE “KEYS AND BOXES” PROBLEM

The problem as specified Here is actually considerably harder than that
axiomatized by Michie. In his specification of the problem, if an object is in the
robot’s hand initially, it is of the same type as the other objects at the place where
the robot is standing. The abave specification allows the object to be of any iype,

and the corresponding solution requires four more steps.
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The solution requires 21 steps. The reader is encouraged to attempt the
problem before reading further. It is not trivial. About half of a class of graduate
students in Computer Science could not sclve it in ten minutes. The solution
requires an ability to deal with é partially specified initial state, and with actions
whose effects are only partially specified. It requires t_He integration of subplans
that have strong interactions. And the solution to the problem has a rather large

number of primitive steps.

This problem is very difficult for more primitive planners that rely solely
on heuristic search. If a planner using pure breadth-first search would analyze one

action avery microsecond, it would require over 8000 years an the average to find

a solution.

‘ As with the previous examples; NQAH’s aperation will be presented
graphically._ The set of SOUP functions for this problem is shown in Appendix C. In
addition to models of the primitive actions specified in the problem, the SOQUP
semantics specify higher level actions for transferring an object from one place to
another, for transferring an object of a given type to a given place, and for emptying
~ the robot’s hand. NOAH's success on this problem stems from its ability to use

these higher level actions.

The system is presented the goal {AT (RED «R) QUTSIDE).

LEVEL 1

Achieve {AT {RED < R) OUTSIDE
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MOVEINSTANCE is the function whose pattern matches the goal. When it

is evaluated, it determines that the robol must transfer a red object Objectl from

the DOOR to OUTSIDE.

LEVEL 2

Transfer OBJECT1 from DOOR to OUTSIDE

LEVEL 3

Acquire OBJECT1 }— Go to OUTSIDE i Put down OBJECT1

To acquire Objectl, the robot must be assured that its hand is empty. it
must put down the possible object Object2 that it may be initially holding. Since the
planner had no information about which place is best to put it down, a SOME node is

inserted in the plan enumerating the possible places Object2 could be placed.

LEVEL 4

SOME
Put down OBJECT?2
in one of TABLE or
DOQOR or BOX1
or BOX2

Go to || Pickup Bring a key Go to || Put down
DOOR OBJECT1 to DOOR QUTSIDE OBJECT1

The planner first tries to place Object2 on the TABLE. The choices for
the SOME node were ordered by the difficulty in retrieving a new object placed

there. The TABLE was best since it was initially empty.
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To briﬁg_a key to the door, the robot must empty its hand of Objectl, the
red object it acquired at the DOOR. Another SOME node is inserted in the plan,

providing choices for the place to put Objectl.

LEVEL 5

SOME
Put down OBJECTI1
in one of TABLE or
DOOR or BOX1
or BOX2

Go to Put down Go to Pick up
TABLE OBJECT 2 DOOR OBJECT1

Transfer objects from Go to Put down
BOX1 and BOX2 to DOOR QUTSIDE OBJECT1

The planner first tries to put Objectl down at the TABLE, since it is still
the least cluttered place. The action.of transferring the key to the door is
expanded into parallel subplans to transfer an object from each box to the door. By
using @ mechanism to be described in the following subsection, NOAH could handle an
alternative problem that specified 541 boxes instead of two boxes, with very little

édditional effort™.

*John McCarthy brought this interesting variant of the problem to the author’s
attention,
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LEVEL 6
{During expansion)
Go to | | Put down Go to || Pick up | |Go to | | Put down
TABLE OBJECT?Z2 DOOR OBJECT1 TABLE OBJECT1
Acquire | |Go to Put down
OBJECT3 | |[DOOR[ | OBJECT3 \
S s 8
N Acquire |_|Go to| | Put down
OBJECT4 | DOOR| | OBJECT4
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At this point, the check of the hierarchical kernel {which is shown in

Figure 14) reveals that the robot is no longer holding Object!, and so there is no

point in going OUTSIDE. The system now tries the alternatives that were set up at

the two SOME nodes (resulting in 15 alternative expansions), two of which reach the

same point where the kernel fails, and the rest of which fail at higher levels. At this

point, the system decides that there is no way to avoid the kernel failure, and so

the best that can be done is to alter the plan to reestablish the purpose whose

precondition had been v'io!ated {in this case, the original goal (AT Objectl QUTSIDE)).
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LEVEL 6

(After purpose of violated step is added as new goal}

Go to | | Put down | | Go to [ | Pick up | |Go to Put down

TABLE OBJECT?2 DOOR OBJECT1 TABLE OBJECT1
Acquire | |Go to Put down

- /| OBJECT3 [[DOOR[| OBJECT3 |\ | [Achiove
\ Acquire | |Go to| | Put down / (AT OBJECT1 OUTSIDE)

OBJECT4 DOOR OBJECT4
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The altered plan is now expanded in the usual way.

The newly introduced goal can be achieved by transferring two objects

from the table to QUTSIDE.

| | Transfer objects from
TABLE and TABLE to OQUTSIDE

LEVEL 7
Go to Pick up Go to Put down
BCX1 OBJECT3 DOCR OBJECT3
setee G
\ Go to | | Pick up | |Go to} | Put down /
BOX2 OBJECT4 DOOH OBJECT4
The transferring operation is. broken down into two

transfers. QOne

original Object2.

independent

of ObjectS and Object6 is the original Objectl; the other is the
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LEVEL 8

Transfer OBJECTS from TABLE to CQUTSIDE
Ty S . / J
\ Transfer OBJECT6 from TABLE to OQUTSIDE

LEVEL 9
Go to| | Pickup || Go to Put down
/TABLE OBJECTS QOUTSIDE OBJECTS \
.0 v mu S J
Go to Pick up Go to Put down V1
TABLE[| OBJECT6 [ | QUTSIDE OBJECTH

The final plan is: Go to TABLE, Put down, Go to DOOR, Pick up, Go to
TABLE, Put down, Go to BOX1, Pick up, Go to DOOR, Put down, Go to BOX2, Pick up,
Go to DOOR, Put down, Go to TABLE, Pick up, Go to OUTSIDE, Put down, Go to
TABLE, Pick up, Go to OUTSIDE, Put down. (The final Put down operation is not
required in the original statement of the problem, but is- necessary in the

axiomatization used here.)

The use of hierarchical kernels has ruch in common with Sussmans
[34 35] approach of debugging almost-right plans. It is costly in comparison with the
other planning mechanisms of NOAH, but the hierarchical planning strategy

necessitates its use.
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F. Planning for Iterative Actions

Although iterative actions are quite common in both everyday life and in
computer programming, there have been very few attempts by problem solving
systems to deal with them. Perhaps the most successful has been the automatic
programming system of Buchanan and Luckham [5], though the system required a

great deal of information to be specified about the iteration beforehand.

The SOUP language provides for the specification of two kinds of iterations, for
building up a class of objects, and for iterating through a class of objects. These

iterations are specified by PBUILD and PBREAK statements, respectively.

The structure of the procedural net allows an iteration to be modelled as a
single action at a higher level of abstraction. For instance, an iteration might specify
the tighening of each of four bolts. The iteration can be modelled at a higher level

as a single action to bolt down a component.

NOAH does not need to expand out every cycle of an iteration. A mechanism
has been developed that allows the planner to expand only one cycle fully, and then
to model the effects of the others by analogy. When a BUILD or BREAK node is
simulated, the code inside the ITERATE statement associated with the node is
evaluated. This results in the creation of nodes modelling a single pa‘ss through the
loop. Then a special REPLICATE node is added, in’parallel‘with the expansion of the
single pass. This noae contains restart information for continuing the iteration. Also,
if the expansion of the single passl caused any new formal objects to'.be generated,

copies of them are created for each unexpanded pass around the loop. This is
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because a number of actions in sequence may be loops that refer to the same
objects, and a subsequent loop might be expanded out in greater detail than the
initial loop. The system needs to understand where the objects came from so that it

can model them and describe them to a user.

The subplan representing the single pass through the loop and the REPLICATE
node are linked togefher with special LOOPSPLIT and LOOPJOIN nodes.

For example, let us look at the expansion of a step of a plan to screw a cover
onto the housing of an air compressor belt. The expansion is shown in Figure 1B5.
The single action "Screw Belt Housing Cover to Belt Housing Frame" is expanded
into a sequence of three iterations. The iterations are represented by single nodes
that model getting 10 screws, loosely fastening 10 screws, and tightening 10
screws. This sequence could be expanded into a 30-step plan, and we could brag
about how the planner could handle really long plans, but that is not the intelligent
thing to do. Instead, each iteration is expanded gnly once. REPLICATE nodes are
used to take the place of all the other expansions. The REPLICATE node contains all
the information necessary to expand the remaining iterations. The expansion is not
actually done, however, unless it is needed to specify additional detailed actions
during plan execution. We will come back to this example when we discuss
execution monitoring, since the response of the user is what determines further

expansions.
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G. Comparison with Qther Current Work

We have seen how a variety of problems which can be represented as
conjunctive goals have simple, straightforward solutions in NOAH. There are a
number of other problem solving systems that use alternative approaches to solve
similar problems. Ahong'these are Sussman’s use of debugging [34,35], Tate’s
search in a space of "tick lists" [38], and the approach of passing goals and actions

backward over a partial plan, which is used by Waldinger [39] and Warren [40].

The approach presénted in this paper is in many ways antithetical to that of
Sussman’s HACKER*. HACKER attacks conjunciive goals by making a "linear”
assumption. That is, conjunctive goals are assumed to be independent and additive,
and so to achieve the overall goal each conjunct may be achieved in sequence. The
system is explicitly aware of this assumptioﬁ. If the developing plan fails, it can be
debugged by comparing the problem that occurred with the known types of
problems genef'ated by the assumption of linearity. As bugs are encountered and
solved, a collection of critics is developed, each of which notices that a certain type

of bug has occurred in a plan.

HACKER does a lot of wasted work. While the problem solver will eventually
produce a correct plan, it does so in rmany Eases by iterating through a cycle of
building a wrong plan, then applying all known critics to suggest revisions of the

plan, then building a new {stili potentially wrong) plan.

*Comparisons with HACKER are, in a sense, unfair, since a major thrust of Sussman’s
work is to explore the issue of |earning by experience. Many of the inadequacies of
HACKER as a problem solving system arise because of its commitment to learning by
subroutinization.
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NOAH makes no rash assumptions, but preserves all the freedom of ordering
that is implicit in the statement of a conjunctive goal. It assumes the conjuncts are
independent, but the nonlinear representation frees it from worrying about
additivity. It applies its critics constructively, linearizing the plan only when
necessary. By waiting until it knows the nature of the conjuncts’ interactions, NOAH
is sure to place actions in the correct order, and thus needs never undo the effects

of a false assumption.

Tate’s INTERPLAN performs a search for a correct linear ordering by using
both debugging and bac‘;ktracking. INTERPLAN does this not by creating alternative
sequences of actions, but rather by examining a tabular representation of the
interactions befween conjunctive goals. Tate demonstrated that a planner can
perform reasoning about plans by dealing with information that is much simpler- than
the plan itself. This concept has been used extensively by the critics in NOAH,
which dd much of their analysis on the tables of multiple effects (TOMESs) rather than

on the plans themselves.

Waldinger and Warren build linear plans in nonsequential order. They require
that the partial plan at every stage be a linear one. However, they allow additions
to the plan by insertion of new actions into the body of the plan, rather than
restricting new actions to appear at the end. This approach has the advantagze of
being copstructive,‘ in the sense that when the planner adds each step to the plan, it
takes into accouﬁt all the interactions between conjuncts that it knows about. But
by forcing the plan to be linear at all intermediate stages, these planners must do
unnecessary search with backtracking, or sophisticated plan optimization to find the

correct order in which to attack the conjuncts.
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Many of the peculiarities of NOAH"sAprobtem solver arise for reasons unrelated
to problem solving. The ‘plans NOAH generates are intended for use in the

cooperative achievement of tasks with a human user. This use of the plans will be

discussed in the next chapter.
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IV EXECUTING PLANS OF ACTION

A. Historical Perspective

The process of menitoring plan execution has received far less attention than
the process of plan generation. The work that has beeﬁ done (see, for example,
Bolles and Paul [3]}, has been mostly decoupled from planning. There have been
only a few investigations of an ihtegrated approach to plan generétion and plan

execution,

Nilsson [26] charécterizes two broad classes of events that an execution
monitor must handle: failures and surprises. Failures occur when the execution of an
action fails to update the real werld in the way that the model of the action updates
the model of the wo_rld. Surprises occur when some fact, unrelated to the current
-action, becomes known. Surprises may indicate that some future steps will be

unnecessary, or that they will no longer be appropriate, or that they will fail.

The most ambitious execution monitor to date has been the PLANEX system
[11,12] for enabling a robot vehicle to carry out plans built by the STRIPS problem

solver.

The basic interface between STRIPS and PLANEX was a tabular representation
of a plan. This representation, called a triangle table, characterized for each step in
the plan what its important effects were and why they were needed in the plan.

Each effect (represented as a clause in the predicate calculus) was stored in a
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column corresponding to the action that caused it, and in a row corresponding to the
first action for which it was a precondition. The set of clauses that had to be true
for any tail of the plan to be applicable, called the tail’s kernel, was easy to

compute.

The use of triangle tables was the first indication of the importance of the
structure of a plan. By_having a clear indication of which facts about the world
were required for each action to be applicable, the system was able to handle
failures and surprises well. Before each action was taken, the set of kernels of
each remaining action in the plan was checked. The action to be executed was the
first one encountered, starting from the end of the plan and working backwards,
whose kernel was not satisfied. So if the world model were somehow updated to
indicate that a later step in the plan were applicable, it would be immediately
applied. Of course, this pnly helps if the world model is automatically updated to
- reflect any chénge in the real world. frhis was the case for the STRIPS-PLANEX
system, but the overhead involved in maintaining a continuously valid symbolic model
of the real world&-made the system run extremely slowly. A more realistic system
must use its knowledge about the actions in the plan and the‘ world it is in to know

when o check the world for updates to the world model.

Nilsson [26] investigated an approach in which the distinction between plan
geﬁeratién and execution was deliberately blurred. His system was composéd of a
set of programs, called ACTIONs, that could have any or all of three kinds of effects.
. They could cause a real-world event to occur; they c.ould produce or add to a plan

of' ACTIONs; or they could call another ACTI_ON as a subroutine. An executive
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program determined which ACTION in the current plan should be run next. In
practice, the first ACTION in the plan was always run, resulting in a depth-first

expansion algorithm.

The system dealt with failure by simple backtracking, and dealt with happy
surprises by setting up QA4 "demons” to watch over the data base and report when
an expression was asserted in the data base that achieved the goal of a subsequent

step.

Nilsson’s program relied on the control structure and the program structure to
represent the hierarchical relationship between actions and subactions, and the time
arderings between steps. The system would perform adequately on very simple
problems, but it had no model of the plan it produced, and no clear idea of what it
was doing. It relied on "demons” to watch for specific changes in the world model.
As with PLANEX, the sytem relied on an accurate world model. For monitoring
execution, one really wants demons that watch the real world and know when to

update the world model.

NOAH makes a clear distinction between planning and execution but it permits
a shift from one to the other at almost any time. The key to NOAH’s ability to
intermix planning and execution is the fact that both the input and the output of the
pltanner and the input to the execution monitor are the same data structure: the

procedural net.

- NOAH deals with failures not by a simple backtracking scheme, but by a

process of replanning to get the course of execution back on the track of the
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original plan. The hierarchical nature of the problem sol#ing élgorithm forces NOAH
to check for unpleasant surprises during planning. It should not be difficult to

extend the system to make similar checks for surprises during execution as well.

B. The Basic Algorithm

We have shown in some detail how the retention of the structure of a problem
enables NOAH's problem .solving component to plan efficiently and without
backtracking. We will now show how this structure helps in the job of monitering
the execution of plans. - Then we will show how the use of a common representation
for problem solving and execution monitofing enables NOAH to integrate thé

processes of planning and execution.

The output of the planning process is a procedural net, which was developed
as a hierarchy of partially linearized plans. Figure 18a suggests the planner’s
viewpoint of the procedural net. A crucial factor behind NOAHs power is that the
same procedural net is also the input to the execution portion of the system. The
execution algerithm views the net differently, however. It sees the procedural net
as a collection of action hierarchies, as suggested by Figure 16b. An action
hierarchy, consisting of a node representing an action, together with its childreﬁ

nodes representing subactions, together with their descendant nodes, will be termed

a wedge.
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The execution monitor Qiews the procedural net as a single wedge, to which it

applies the following algorithm:

(1) Ask the user to accomplish the action represented by the node at the top
of the wedge. This is done by saying the node’s query to him.

(2) If he responds positively, assume the action has been accomplished, and so
the current wedge has been successfully executed,

(3) If he responds negatively, assume he needs a more detailed breakdown of
the action, and so execute in turn all the subwedges headed by children of
the head of the current wedge.

Actually, the algorithm is more complicated than this. The user may make a wider

variety of responses. To each query, his passible responses in the current system

are:

Affirmative responses -- Yes, Qk, Yup, Check .. This type of response

indicates that the user understands the instruction and is able to do it. In fact, in
the current implementation, NOAH assumes that the task has been completed. This

type of response signals the execution algorithm to move on to the succeeding

wedge.

Negative responses -- How, No .. This type of response indicates that the
 user needs help before he can perform the indicated action. This signals the

execution algorithm to move to the first child node.

Motivation response -- Why. The user wants to know why a certain task

needs to be done. The system responds to this questibn by placing the task in the

context of the other tasks that remain to be done at that level. This is done by
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listing the queries of the succeeding sibling nodes (those that have the same parent
as the current node). If the user still wants to know why, the program then repeats
the query associated with the parent node. This process may be repeated (if the

user asks "why" enough times) until there are no more parent nodes.

Error responses -- Help, Can't .. The user feels that the task he has just
been asked to do is impossible. He feels that he must somehow be off the track of
the correct plan. The system responds to this by updating its world model until the
reason for the problem is discovered. Then the system plans to recover from the

failure, as described in Section F below.

When the top wedge of the procedural net has been successfully executed,

the execution phase terminates with "Thank You."

C. Execution Monitoring

When dealing with the real world, it is important not to assume that actions
will be carried out as planned. Failures in hardware, failures in communication, and
unexpected events caused by outside farces can all alter the expected outcome of

an action,

The PLANEX system faced this problem by continually checking the plan’s
kernel against its‘ world model, to ensure that the execution was on the right track.
PLANEX presumed that an adecuate mechanism existed for accurately updating the
world model. This was almost the case, since there were only a small number of
actions that the robot vehicle could take, and the model of each action contained

information about the uncertainty it would introduce into the world model. When
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uncertainties reached a threshold, the vision subsystem was used to restore the

accuracy of the world model.

For the domain of the Cemputer-Based Consultant, or even for a richer robot
domain, this approach will prove inadequate. The number of waye in which an action
may go wrong s very large. The apprentice or a semi-autonomous robot may
initAiate actions independently. In the CBC system, the apprentice is reIied on to
provide much of the information about the real world, and he may provide
. misinformation. So NOAH cannot treat the world model as a given. It must initiate
interactions with the user at appropriate points to ensure that it is accurately

monitoring the course of the execution.

To do this dynamically during the course of execution requires a model of the
user’s capabilities. This is not presently implemented in the NOAH system, so this
type of execution monitoring is not done. However, when a serious error is
discovered (requiring the system to be more thorough in its efforts to determine the
state of the world), the system must determine what portions of its world model

differ from the actual situation.

The system does this by asking the user to verify that he has carried out the
portion of the plan that precedes the action where the error was discovered. The
verification is done hierarchically, so that the system verifies the higher level plans
before verifying the plan at the level where the error was discovered. Each plan is
verified by querying the user about all the actions that precede the current action.
The requests for verification are of the form: "Did you ..", followed by the query of

the node that represents each action. The verifications are carried out in reverse
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chronological order. To each request for verification, the user may give one of

three classes of response:

Positive responses ~- Yes, Ok, Yup, Check .. In this case the system has

learned nothing useful, since the user thought he had done the action correctly in
the first place, and yet some action must have been performed incorrectly. The

verification algorithm goes on to other nodes.

Negative resoonses -- No, .. In this case the discrepancy between the

sysfem’s model and the real world has been found.

Unsure respaonses -- Can’t, Help ... . The user may indicate that he is unsure, in
which case the system immediately provides more detailed questions by asking him

about the node’s children.

if all. the preceding actions at the level where the error was noticed have
been verifiéd, and all the higher level plans have been verified, and the user still
feels nothing is wr.ong, the system will ask him to verify all the more detailed plans,
in order of increasing detail. If all the plans in the net have been verified, and the
error still has not been found, the system wili extend the procedural net by
expanding the partially executed plan as described in Section D below. If no

extension is possible because the action semantics contain no more detail, the

system gives up.

This algorithm tries to home in" on the particular problem using minimal
interaction with the user. It avoids going into details unless no infarmation has been

found at a general level, or unless the user requests them.
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D. Expanding a Partially Executed Plan

The simple problem solving algorithm described in Chapter | expanded a
procedural net completely, until no new details were uncovered. This is often
impracfical, especially when the plans are used to interact with a partially skilled
human who can carry out some detailed planning himself, An ultimate version of
NOAH would make a local decision at every node about whether to expand it. The
current version allows the expansion to terminate when a predetermined depth is

reached.

Now, the human user may run into trouble at any point, and reqguire
instructions that are more detailed than have been planned for. But as long as there
is a body of code associated with the most detailed nodes, the system can simply
coﬁtinua building the plan. Rather than insisting on building an entire level at a time,
the system can simply expand the relevant actions. This is done by expanding the

node without criticism, a relatively cheap operation.

This operation is accomplished by first building a dummy PLANHEAD node that
centains the image of the world as seen by the node being expanded. The new
subplan is built following this dumrﬁy node. The existence of the dummy node aliows
the new subplan to be developed in a world model that corresponds to that of the

node being expanded.

In the transcriptions of plan execution to be presented below, the expansion of
a node whose query is guery is indicated as:

Expanding node-number: query .
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The capability to expand a plan at execution time is especially important for
applications involving interactions with humans. The system must have the potential
for handling a large number of details, without actually doing all the work to plan for

them. Section G below will show. examples of this feature.

E. Executing lterative Actions

The general plan expansion algorithm described in the preceding sections uses
the semantics ebodied in the SOUP code to generate detailed knowledge about
actions. For dealing with the non-initial passes around a loop, a much simpler,

syntactic approach is adequate.

As described in the chapter on planning, an iterative action is expanded by
NOAH into two components: a detailed subplan for a single pass around the loop and
a special REPLICATE node that contains the information necessary to compute
subplans for subsequent passes. The query of the REPLICATE node is identical to
that of the node specifying the original iteration, except that any references to n,
the number of times the loop is to be traversed, are replaced by the number n-1.
(If n equals 1, no REPLICATE node is included, since there is no need to continue the

iteration.)

The algorithm for executing a subplan that begins with an expansion of an n-
way iteration is as follows:

(1) Set the variable i to 1.

(2) Execute the subplan for the ith pass through the loop.

(3) Ask the apprentice to execute the remaining iterations by presenting the

query of the REPLICATE node.
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(4) If the apprentice responds positively, we are done.
| (B} Otherwise, use the exemplar and the formal objects list of the REPLICATE
node to generate a subplan for the i+lth pass through the loop. Update

the REPLICATE node to specify n~i remaining iterations. Go to step 2.

As an example, Figure 17 presents three dialogues that might be generated
fram the plan that was presented in Section E of Chapter 3, for installing the belt

housing cover of an air compressor.

FIGURE 17
THREE DIALOGUES GENERATED BY THE PLAN QF FIGURE 15

Dialogue |

<(SCREW BELTHOUSINGCOVER TO BELTHOUSINGFRAME)
zl(-igii\'}'l\{ 10 1/2 INCH #8 PAN-HEAD SCREWS)

z?L}‘(:DOSELY FASTEN THE 10 SCREWS)

z(OTﬁGHTEN THE 10 SCREWS)

>OK
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FIGURE 17
THREE DIALOGUES GENERATED BY THE PLAN IN FIGURE 15 (CONCLUDED)

Dialogue 2

<{SCREW BELTHOUSINGCQOVER TO BELTHOUSINGFRAME)
>HOW '

<(GET 10 1/2 INCH #8 PAN~-HEAD SCREWS)

>HOW

<(GET ONE 1/2 INCH #8 PAN-HEAD SCREW)

>HOW

Expanding NODE177: (GET ONE 1/2 INCH #8 PAN-HEAD SCREW)
<{LOOK IN THE SMALL CABINET IN THE DRAWER MARKED #8)
>0K .

<{(GET 9 1/2 INCH #8 PAN-HEAD SCREWS)

>QK

<(LOOSELY FASTEN THE 10 SCREWS)

>0OK

<(TIGHTEN THE 10 SCREWS)

>0K

Dialogue 3

<(SCREW BELTHOUSINGCOVER TO BELTHOUSINGFRAME)
>HOW :

<(GET 10 1/2 INCH #8 PAN-HEAD SCREWS)

>QK

<(LOOSELY FASTEN THE 10 SCREWS)

>QK ‘

<(TIGHTEN THE 10 SCREWS)

>HOW .

<(TIGHTEN ONE SCREW)}

>HOW

Expanding NODE185: (TIGHTEN ONE SCREW)

<(GET THE SCREWDRIVER WITH 1/4 ON THE HANDLE)
>0K :
<(TURN THE SCREW CLOCKWISE WITH THE SCREWDRIVER UNTIL FAIRLY TIGHT)
>0K :

<(TIGHTEN THE 8 SCREWS)

>0K

97
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F. Error Recovery

A major concern of all systems that must deal intelligently with the real world
is the ability te recover gracefully from unexpected events in the real world. The
representation of actions in a procedural net allows NOAH to home in on the nature
of the unexpected event, as described in the preceding section, and to plan for new

| actions to allow as much as possible of the existing plan to be reused.

- The current implementation has a rather simple-minded approach to error
recovery. It is intended to be an indication of the adequacy of the procedural net to
'support this aspect of intelligent behavior, rather than a demonstration of good ideas

about error recovery.

When an error is pinpointed, as described in the previous section, NCAH
creates a new plan to achieve the intended effects of the erroneous action. This is
done in a manner similar fo that done when expanding an existing plan to greater
detail. There are a few important differences, however. First, the dummy
PLANHEAD node contains an image, not of the current action’s branch in the partial
- ordering, but of the world model built up from all the actions that were executed.
Secondly, since the new nodes are at the same level as existing nodes, rather than
being more detailed as in the simple extension case, the new subplan must be
integrated into the existing plan. This may invalve recursive calls on the replanning
algorithm since redoing the effects of the erroneous action may undo desired‘ effects

of other actions.
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G. An Example

Rather than give detailed algorithms for error recovery, we shall simply
present an example dialogue that the system generated when recovering from an
error. The task was to assemble an air compressor from a partially disassembied
state, and the first three levels of the procedural net are shown in Figure 18. The
error on the user’s part was in installing the pump backwards. While it is unlikely
that a real user would make such a mistake, similar problems are extremely likely
when deéling with subcomponents of a device like the air compressor. In fact, the
example was inspired by a real problem taken from a protocol of a partially skilled
apprentice installing the pump, in which the top of the pump had been installed
- backwards, allowing the pump to be fastened to the compressor without trouble, but
rendering later steps in the installation impossible. We could have used this

example, but semantics have not yet been developed for the components of the

pump.

>(TRY TO ACHIEVE ASSEMBLED AIR COMPRESSOR)

<HOW

(We will INSTALL PUMP and INSTALL PUMPBRACE and INSTALL PUMPPULLEY

and INSTALL BELT and INSTALL BELTHOUSINGCOVER)

The various INSTALLs have been so intermixed by criticism
that there is no meaningful order in which to do them.
So the system mentions that they will all be done, and then
drops immediately to a more detailed level to specify
individual actions.

>(CONNECT BELT TO MOTORPULLEY)

<0K

>(CONNECT PUMP TQO PLATFORM)

<QK
The apprentice thinks he has performed this step correctly.
Actually, he has installed the pump backwards.

>(CONNECT PUMPPULLEY TO PUMP)

<0K

This can be done even though the pump is on backwards.
>(CONNECT BELT TO PUMPPULLEY)
<CAN'T

This step cannot be done; the system then tries to correct
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Try To Achieve
{Assembled Aircompressor)

LEVEL 1

LEVEL 2 \nstall

Pump

Install
Pump Brace

Install
Pump Pulley

Install
Belt

Install
Belt Housing Cover

LEVEL 3
(Before Criticism)

Connect Pump To Platform

Connect Pump Brace To Pump

Connect Pump Brace
To Belt Housing Cover

g Connect Pump Pulley To Pump

Connect Belt To Pump Pulley

Connect Belt To Motor Puiley

Connect Belt Housing Cover
To Beit Housing Frame

FIGURE 18 PROCEDURAL NET FOR AIR COMPRESSOR ASSEMBLY
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its model of the world by querying the apprentice about the
expected state of the world at this point in the execution
of the plan. Using the algorithm specified in Section C,
the system asks questions at levels no more detailed than
that of the step that couldnt be executed. It uses the
portions of the procedural net shown in Figure 189.

>(Did you INSTALL PUMPPULLEY)

<YES

>(Did you CONNECT PUMPPULLEY TQ PUMP}

<YES

>(Did you INSTALL PUMP)

<HELP
The apprentice indicates that he is unsure if he installed the
purp correctly. This aids in directing the system toward the
problem. The system would soon arrive at the problem even if the
apprentice said "YES".

>(Did you CONNECT PUMP TQ PLATFGRM)

<HELP :
The system now utilizes information in the procedural net about
more detailed actions, as shown in Figure 20.

>(Did you ATTACH PUMP TQ PLATFORM)

<YES

>(Did you POSITION PUMP WITH RESPECT TO PLATFORM}

<HELP

Expanding NODE44: (POSITION PUMP WITH RESPECT TO PLATFORM)
The level of detail required now is greater than the level to
which the procedural net has been built. The system
dynamically expands the net, using the algorithm described in
Section C, to provide greater detail about the action in
question. The procedural net now appears as in Figure 21.

>(Did you PLACE THE PUMP QVER THE BOLTHOLES IN PLATFORM SO THAT THE

OILDRAINNIPPLE IS ORIENTED FORWARD}

<NO
The error has been discovered. Now the system will plan to
recover from it.

(Expanding plan at level 3)

Expanding NODE73: PLANHEAD

Expanding NODE74: (Reachieve CONNECTED PUMP PLATFORM)

(Expanding plan at level 4)

Expanding NODE75: PLANHEAD

Expanding NODE76: (DISCONNECT PUMPPULLEY FROM PUMP)

Expanding NODE77; (DETACH PUMP FROM PLATFORM)

Expanding NODE78: (POSITION PUMP ON PLATFORM)

Expanding NODE7S: (PLACE THE PUMP OVER THE BOLTHOLES IN PLATFORM SO
THAT THE OILDRAINNIPPLE IS ORIENTED FORWARD)
The new plan is shown in Figure 22. .
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PLANHEAD Reconnect pump
to platform
I, g "'// N o~ -
— - - N\ —~—
—— - — - 7/ A T~ ~
— _ — Vi “\ — — -
PLANHEAD Disconnect pump pulley || Detach pump |_| Position pump | | Attach pump
from pump from platform on platform to platform

TA=-740522-77

FIGURE 22 PROCEDURAL NET TO RECOVER FROM ERROR

Patching in NODE74
The new plan is now patched into the existing plan, as
suggested in Figure 23. The system discovers that the new
plan would disconnect the pump puliey from the pump in the
course of positioning the pump correctly. So it creates a
new plan for attaching the puliey again.

(Expanding plan at level )

Expanding NODE86: PLANHEAD

Expanding NODE87: (Reachieve CONNECTED PUMPPULLEY PUMP)
The new plan is patched in.

Patching in NODE8B7
The patched plan, shown in Figure 24, will now fix the error

and its side sffects.
>(Reachieve CONNECTED PUMP PLATFORM)

<HOW

>(DISCONNECT PUMPPULLEY FROM PUMP)
<0K .
>(DETACH PUMP FROM PLATFORM)

<0K

>(POSITION PUMP ON PLATFORM)

<HOW
>(PLACE THE PUMP OVER THE BOLTHOLES IN PLATFORM SO THAT THE
OILDRAINNIPPLE IS ORIENTED FORWARD)
<0K
>(ATTACH PUMP TO PLATFORM)
<QK '
>(Reachieve CONNECTED PUMPPULLEY PUMP)
<QK _ '
The patch has been executed, so execution proceeds to
conclusion,
>(CONNECT BELT TO PUMPPULLEY)
<0K
>(CONNECT BELTHOUSINGCOVER TO BELTHOUSINGFRAME)
<0K
>(CONNECT PUMPBRACE TQO PUMP)
<0K
>(CONNECT PUMPBRACE TQ BELTHOUSINGFRAME)
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<Q0K
(Okay, we did INSTALL PUMP and INSTALL PUMPBRACE and INSTALL
PUMPPULLEY and INSTALL BELT and INSTALL BELTHOUSINGCQVER}
~ Thank you
In this example, we have seen NOAH provide plans at varying levels of datail
to match the apprentice’s ability. We have seen the system update its model of the
world when a serious failure took place during execution. And we have seen NQAH

recover from the failure by creating and then executing a new hierarchy of plans to

get back on the path of the original pian.

H. Comparison with Other Current Work

NOAH relies heavily on the rich structure of the procedural net to enable it to
ronitor execution and to recover from failures. A somewhat similar representation
was used by Hayes [17] for a system that created and simulated travel plans.
Hayes’ representat'ion involves two related data structures: a tree of subgoals and a
graph of "decisions”. The subgoals, for instance "go from Paris to Marseilles by
tf‘ain," are represented in a tree structure identical to that created by the perent-
child links of the procedural net. The decisions, for instance, "travel from Paris to
Nice via Marseilles (as oppased to some ather city)," are stored in a graph structure

‘where links represent logical dependency. Associated with the decisions are

pointers to the subgoals that are their direct consequences.

When a faillure of the plan occurs, Hayes’ system replans by removing the
portion of the plan that has been executed, identifying the decisions that are
inappropriate in the new situation, eliminating their effects from the plan, and then

using whatever is left of the original plan as a basis for constructing a new pian.
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‘This is a very conseryative approach, as it will throw out any portion of the
plan that might possibly be affected by an unexpected real-world event. For rather
complex plans this is likely to be unacceptably inefficient. On fhe other hand, the
explicit representation of the decisions the system made is extremely useful. Even
if a more sophisticated recovery mechanism were to be more deliberate about what
portion of the plan was to be thrown out, the graph of decisions provides exactly

the right information to do it.

It is worth noting that, although the strategies employed by NOAH for
execution monitoring and error recovery are rather simple, the behavior generated

by the system is rather impressive to a naive viewer.
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V INADEQUACIES OF THE CURRENT IMPLEMENTATION

The NOAH s_ystem is a testbed for exploring. a simple concept: that the
structure of a plan can be much richer than existing systems have presumed, and
that this structure can be exploited both in solving probl.ems and in monitoring the
execution of their solutions. The system described here is primitive and incomplete,
and a more complete one will be required to fully explore the implications of this
representation of plans. This chapter will discuss some of the more serious

inadequacies of the current implementation.

A. The Generality of the Procedural Description of Domain Knowledge

The most serious deﬁcienc‘y‘ in the current system is its‘ lack of awareness
about the auxiliary computations specified in the procedural semantics (the SQUP
‘code) of a task domain. The procedural net representation lets the system be
aware of the goals and subgoals that the planner has decided to tackle, but it does
not preserve any information about the computation that res.ulted in those decisions.
In some cases, a reordering of subgoals might alter the state in which one of these
computations would be carried ou.t. Then the computation might produce different

results.

For example, a section of SOUP code for depositing a check at the bank might
say, "If you are driving a car, then go to the drive-up window, Otherwise, go inside.
Then deposit the check." Now, a parallel subplan might require the use of a car, or

might require that some other business be transacted on foot right next to the bank.
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The choice of whether to go inside the bank should not be based on whether the
world model showed that a car was in use at the time the "Deposit the check"
action was expanded. The choice of the "Go to window" subgoal or the "Go into
bank"” subgoal should be affected by the operations in parallel branches of the plan.
But unless the system is explicitly aware of the nature of the conditional test, it will
already have irrevocably chosen a particular subgoal by the time the critics have a

chance to consider all the parallel branches together.

There are two ‘ways in which the deficiency could be dealt with. One approach
would be to restrict the complexity of the SOUP code that specifies the actions of a
task domai'n. Then the syétem would not alter the effects of an action merely by
changing its position in the plan. For example, the conditional test might be

forbidden, so that, for example, the drive~-up window would always have to be used.

However,'if NOAH is to be effective in truly complex domains, SOUP must have
all the richness of a PLANNER-like language [2], and the system must be aware of
this new type of interaction. So the ultimate NOAH must take an alternative
approach, and provide a mechanism for noting these auxiliary computations. A
notation of all decisions taken dufing pianning, such as Hayes [17] used, would
provide the necessary information. But the number of decisions made in the course
of -avaluating PLANNER-like functions is relatively large compared to the small

number of decisions that the system would actually need to notice. .

Perhaps a more workable solution would be fo allow the entries in the tables
of multiple effects to specify a computation as well as a simple expression. The
computation, evaluated at the time a critic is analyzing inferactions, would reflect

the effects of the currently postulated order of subgoals,
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Anaiysis of the many alternative tables that this approach would generate
‘might be too éxpensive computationally. Some sort of network analysis might prove
in the end to be more satisfactory than the tabular approach that is used in the

current system.

B. Relation of Hierarchical Model and Action Hierarchy

The progressive expansion of plans puts a set of constraints on the
interrelationship of the declarative model and the procedural descriptions of actions.
The critics will not notice an interaction between actions unless the same predicate
name is mentioned by them. So it is of some importance that functions that are
nested equally deeply in the procedural semantics refer to the same set of
predicates. If not, the interaction between the actions will nat be noticed by the
system until the deeper of the two actions refers to the set of predicates. If the
plan should not be carried down to a sufficiently deep level of detail, the system

may never notice the interaction at all and produce an incorrect plan.

The solution to this problem would require the system to treat the effects of
an action on a semantic basis rather than the syntactic one used now. Rather than
naticing interactions just on the basis of a (syntactic) pattern match, the system
would have to use‘a mechanism such as that propesed by Fikes [10] to compute
whether any effect caused by an action in a plan might imply any other effect in the
plan, or the negation of such an effect. Alternatively, it might use a regression
technique such as Waldinger [39] uses, with very detailed regression rules to
reflect all possible side-effects of each action. This clearly would be unacceptably

expensive unless it were carefully contrelled by some other mechanism.
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The basic point of this discussion is that the system derives a large rheasure
of its power from the simpli'c.ity of its algorithms for noticing ;cmd dealing with
~ multiple effects. When these algorithms are forced to move from a strictly syntactic
approach to one that permits even shallow deduction about the effects, the power

of the system may be reduced.

C. Backtracking and Other Forms of Search

NOAH currently makes no provision for baéktracking if a detailed expansion of
a plan indicates that thé higher level plan won’t succeed. (This is nat quite true; the
system can try alternatives specified in @ SOME node.) The research reported here
has focused on the non-search aspects of problem salving, but the procedural net
representation can certainly support a provision for backing up when a failure
occurs, This will have to be done if NOAH is to be truly competent at solving
problems. It is interesting to note, however, that with an appropriate ranking of
actions into a hierarchy, domains as complex as the CBC can be encoded in a way

that requires search only within a given level of the plan.
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VI EXTENSIONS TO THE CURRENT IMPLEMENTATION

The richness of the structure of the procedural net representation allows
knowledge about actions and plans of actions to be stored in a computer memory
and used in a variety of worthv;fhile ways. The current NOAH system stores g few
kinds of. knowledge and exploits them in a few of these ways. This chapter will
begin by discussing several other kinds of knowledge that are important for problem
solving and execution monitoring, and that can be used with particular effectiveness
when stored within the structure of the procedural net. Next will follow a
discussion of usas of the étructure for natural language understanding and for
Iearning.,‘ Finally, a few other extensions of the present work, relating to other

aspects of the current system will be presented.

Some of these extensions are relatively easy to implement; others are major
research projects in their own right. The purpose of this chapter is to raise

questions, not to suggest answers.

A. Nodes as Action Frames

~ As we mentioned in the section on representation, the nodes of the procedural
net can be viewed as instantiations of frames about actions. They are a limited kind
of frame, howevér. All the "slots" for associating entities with a node in the net are
derivable from either the SOUP code associated with the action or from the
structure of the net itself. There are many other useful kinds of information that

could be associated with individual nodes. None have thus far been included in the
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NOAH system because no mechanism now exists for specifying their association with
individual nodes. Thus, the inclusion of the features discussed in this section would
reduce the simplicity of the current procedural method of specifying the semantics

of a domain.

Among the items that might be associated with a node is a specification of
postconditions. Postconditions. are the analogue of preconditions; they are a set of
items that must be established upon completion of an action. An example of a
postcondition is that a pulley should rotate without wobble after being installed. No
aspect of the installation process need refer to the potential of a wobble; indeed,
there is no prevent-wobble action. But a check about wobbles is appropriate at
\-a end of the installation. The use of postconditions can be very important in
execution mbnitoring, and might also aid in enriching the world model for use in

planning. and error recovery.

This particular item is rather easily represented in the existing framework for
specifying semantics. The current CBC system associates preconditions with
particular goal expressions. The same approach could be used to associate

postconditions with particular goals.

Another iferh of particular importance in applications with human interaction is
a set of expected ways in which the action could be erroneously executed. Minsky
[25] has discussed the importance of such a feature for his frame systems. This
would help the syétem to catch errors at the time they occﬁr, thus avoiding-many
instances where extensive repl’ahning for error recovery is necessary. The

individual possibilities of failure could even be matched against a model of the ways
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in which the user has erred in the past to determine if there are any specific
additional warnings that should be given during execution. Since the set of these
possibilities is likely to be quite large, it would not be practical to encode them
directly into the SOUP code. Some alternative method would be preferred for

associating them with particular nodes in the net.

An item of great importance for a system that could interact verbally with a
human user is information about expected queries that a human user might ask
during the‘gxecution of a particular action. By associating with an action a small set
of related concepts, or even key words to search for in the speech stream, a great
heuristic advantage could be provided to a speech understandef. Again, the

mechanism for associating this list with a particular action is not cbvious.

Another type of item that might play a strong roll in diagnosis-o}'iented
applications is a reférence to an alternative representation of the state of the
world. The basic plann_er and execution monitor relies on a representation of the
world model as a collection of expressions. But other ways of representing aspects
of the world, for instance a characterization of an expected view of a scene when
an action is completed, a function specifying the gradual effects of an action over
time, or the acoustic pattern produced by running machinery, might be associated
with some nodes in the net. The alternative representations would augment the

system’s ability to understand and reason about actions.

B. A Task Model for Natural Language Understanding

Discourse, especially spoken discourse, is replete with partial utterances and
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sentences that are ambiguous‘when taken in isolation. Recent approaches to
understanding natLu_’aI language (see, for example, Chafe [B6]) have stressed the
importance of using a hiétory of the dialogue and a current world model to aid in
completing partial utterances and in resolving ambiguous references. For task-
oriented dialogues such as those involved in the éooperative efforts of an
apbrentice and the Computer-Based Consultant, it has béen shown by Deutsch [7]
that a richly structured representation of the task at hand is an important additional

~ source of knowledge.

For example, consider the following fragment of a dialogue between a human
expert and a human apprentice, taken f_rom Deutsch:

Apprentice: One bolt is stuck. I'm trying to use both the

: pliers and the wrench to get it unstuck, but |

- haven’t had much luck.

Expert: Dont use pliers. Show me what you are doing.

Apprentice: I'm pointing at the bolts.

Expert: Show me the 1/2" combination wrench, please.

Apprentice: OK

Expert: Good, now show me the 1/2" box wrench.

Apprentice: | already got it loosened.
The apprentice was not reporting that he had loosened the box wrench . or the
pliers. It is obvious that he’s loosened the bolt. The pronoun reference would be
hard to resclve by considering the dialogue in the linear sequence in which it is
produced. But when the structure of the task being carried out is considered along

With the dialogue, resolving the reference is much easier.

Figure 25 displays a procedural net that might represent the example subtask
at the time the apprentice said, "l already got it loosened." The utterances of the

expert and the apprentice are associated with the appropriate nodes. The lower
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four nodes would have been generatedi during the course of execution; the higher
nodes are part of the standard plan for the subtask. Deutsch claims that the only
utterances that need be considered in resolving a pronoun reference are the last
utterances a_t each level of the detail hierarchy. The sequence of nodes that must
be considered for the resolution are indicated by bold parent-child links in the
figure. By analyzing the small number of relevant utterances, one can easily
understand that the reference is to the bolt. The procedural net has been designed
with its potential use as a task model in mind. During execution, a set of links is
established that trace the course of the actual execution through the plan. Thus, at
a-ny point during the course of execution, the system can have access to the specific
execution path taken by the apprenticé through the plan. This real-event linkage, in
" conjunction witlh the predecessor-successor and parent-child links of the original
hierarchi‘cal plans, constitutes a rich model of the task and its course of execution.
When coupled with a history of the dialogue, which-may be distributed among the
nodes as shown in our example, the structure of the task will become an important

aid in understanding discourse.

The speech understa-nding component of the Computer-Based Consultant will
utilize this task model as an aid in resolving ambiguities and completing partial
utterances. In addition, the task model will be of gre;t value in thel inverse problem
- of generating descriptions of objects. The computer based consultant must speak
uhambiguous|y, yet parsimoniously. Deutsch’s work suggests that to avoid ambiguity
without being overly descriptive, the consultant need only distinguish among objects
that are referred to in that subset of ‘tHe currently active wedge that represents

actions at varying levels of detail that are currently under completion.
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C. Saving and Reusing Plans

There have been surprisingly few serious attempts at machine learning of
programs or plans of action. Many systems that can build plans or programs might
well be extended to save and attempt to reuse the results of their efforts.
Unfortunately, learning is a hard problem, and most workers {the author included)

have chosen to tacklie other problems.

The two major successes in learning about sequences of actions in the last
five years have been the STRIES system of Fikes, Hart, and Nilsson [12] and
Sussman’s HACKER [35). Both of these systems learned by creatiné entities with
much more structure than the original plan itself. For STRIPS, a MACROP was
created that represented a sequence of actions in aggregation. Although the original
plans were linear sequences of actions, the MACROPS were represented as "triangle
tables" that represented the interrelation of the preconditions and effects of each
action with all the others, not just that of the actions that were sequential in the
.original plan. For HACKER, a subroutine was created or modified that had, in
general, a more complex structure than the particular plan the subroutine would

generate given the current problem.

While this section will only make vague proposals about learning and reusing
plans, it is worth noting that the procedural net already represents a plan in a very
rich and well-structured way. Since the structure is rich enough to enable the
NOAH system to perform both routine execution monitoring and more sophisticated
error recovery, there is some evidence that it is rich enough to adequately

represent a learned plan {or hierarchy of plans) of action. Let us explore the
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characteristics that determine when a plan represented as a procedural net is worth
learning. The expansion phase of the planning process is extremely efficient; there
is little point in simply storing the results of expansion. The criticism phase, when a
global look is taken at the overall plaﬁ, is more expensive, hawever. Thus, a plan
" that had been éubjected to severe criticism wolld be a good candidate to save for

possible future reuse.

NOAH is very conservative about altering plans during criticism. Only
reorderings that are forced by conflicts in the plan structure, or mergings that are
justifiable within the scope of the criticism are performed. | Any conflict in a
criticized subplan would aléo be a conflict in the new more global plan. Any merging
that was valid in the subplan would be valid in the larger plan. The ideal plan to
save for possible future use, then, is one in which a ‘substantial arﬁount of criticism

- has taken place at several levels of detail.

How can the system characterize the newly saved wedge to determine when it
is relevant to insert in a new plan? The saved plan was completed in the exact way
it was because it was computed in the context of a particular world model. Those
aspects of the world model that were used during the computation of the plan at
each level of detail can be aggregated on the add and deleté lists of a dummy
PLANHEAD node at the beginning of each plran. If the effects of the entire wedge
(characterized by the add and delete lists of the node at the top) are desired, and
the current world model at a number of levels matches the one under which the
wedge was originally computed, then the wedge is applicable and can be patched

into the existing plan just as error recovery plans were patched in. The presumed
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worid model at the beginning of the plan at each level even tells the system how
many levels of the wedge can be validly patched in, and indiéates where fresh

computations in a new, detailed environment must be made.

The hierarchical structure of the saved wedge would hopefully allow the
system to use the learned sequence of actions when it was approximately relevant

as well as when it was exactly relevant.

D. Learning New Semantics Through Interaction with an Expert

Yet another type of learning is also important, especially for expert systems
such as the Computer Based Consultant. Expert systems cannot be encoded in one
shot. They require a good deal of interaction with one or more experts to debug
and expand their expertise until they begin to perform competently. So an expert
system needs a way to acquire and easily encode new expertise, and to debug old
attempts at expertise. Existing expert systems that accept updating readily, such
as DENDRAL [4] and MYCIN [33], have very small, localized primitive chunks of
knowledge that all adhere to a rigid syntax. This makes it easy to replace or update
an entiré chunk, It also reduces the heuristic power of the systems, because the
grain of each individual action is so fine. The NOAH system has a much more
powerful érimitive, namely a SOUP function. This allows the system to take larger,
more goal-directed steps through the search space, but it means that many additions
and updates to the system’s expertise will be done by altering existing functions,
rather than by replacing old ones or creating new ones. Yet experts don’t always
speak in‘programs. They may watch a run of the system and say, “At that point,

such an action should have been taken"
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The planning algorithm of the NOAH system maps general knowledge in SOUP
code form into knowledge related to a specific problem in the procedural net form.
An appropriate algorithm can be designed to perform an inverse mapping from a
problem-specific set of actions inte a more general SOUP function. If an expert can
tell the system how a specific procedural net should be altered for a specific
broblem, then this algorithm can be used to update the original SOUP code itself,

thus allowing the system to learn incrementally.

E. Execution-Time Conditionals

An important use of the facility to intermix planning and execution would be to
allow a plan to include decision points that are to be decided upon at execution
time. It is sometimes the case that the alternative plans within a disjunctive split
specify a set of preconditions that together span all possibilities. An example from
an automatic programming domain might be a disjunction based on whether a
particular variable were bound to NIL, to an atom, or to a list. When such a
condition is discovered, and the system can determine at execution time which
disjunct is true, an appropriate critic could mark the disjunction as an execution-
time conditional. No planning to achieve any of the preconditions is necessary since

one of them is guaranteed to be true.

For certain domains of expertise, where the user has a wide rangé of choice
of possible actions, it will be desirable to encode execution-time choices explicit|y-
into the procedural semantics of the domain. For example, an interactive consultant
on the use of a time-sharing system would offer the user alternative ways to use
particular system features, and follow a given alternative to greater detail only if

the user selected it.
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F. Planning for Infbrmation Gathering

A similar extension could aliow the procedural semartics to specify a specific
executioﬁ-time test to be performed. For example, a step in a plan to arrange a
meeting might be "See if Noah is in his office. If he is, tell him the meeting is at
10:00. Otherwise, ieavé him a note.” The action will have the effect of notifying
Noah about the meeting,' regardless of the result of the information-gathering portion
of the step. The information gathering portion can be expanded furthe‘r at planning
time. One alternative branch will be chasen at execution time, depending on the
information acquired. The appro.priate branch can then be expanded at execution

time.
G. User Models

The question of how to model a human being who is interacting with =2
computer system is far too broad to be dealt with here. We will simply make a few
observations about the ways in which the structure of the procedural net can help

in delimiting the areas of competence of a human user.

A first observation is that there are typically many instances of very similar
wedges in a plan that a human would carry out with a computer’s assistance. Any
task is, at sorhe level, a performance by rote of subtasks. The wedge structure of
_subtasks in the net should allow a wedge-matching algorithm to determine if a
wedge to be executed is sufficiently similar to other wedges that have been
successfully executed sa that no further instructions are necessary other than,

effectively, "execute the wedge. The wedge matcher might zlso note the
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differences between wedges, and remind the user of ways in which this wedge

“were different.

A second observation is that relatively sophisticated users seldom need to
know all the individual steps in order; what they need to fully understand a problem
is a report of the changes in the plan wraught by the critics. An example of such a
request to a sophisticated user is, "Now install the pump top, and be sure to attach
the pump brace while putting in the right rear bolt." Perhaps a measure of a user’s

sophistication is the complexity of criticisms that he does not need to hear about.

~ H. The Formal Theory of‘Constructive Criticism

The constructive critics discussed in Chapter 3 were developed in an ad hoc
fashion, No attempt has been made to justify the transformations that they perform,
or to enable them- to génerate all valid transformations. However, it should be
possible to define an algebra of plaﬁ transformations that map plans represented as
partial orderings into other partial orderings. It may be possible ta develop a body
of formal theory about the ways in which interacting subgoals can be dealt with.
Some work along these lines has been done in the area of code optimization, where
Aho and Ullman [1] developed a complete set of transformations that preserved

equivalence among programs.

l. Applications to Robotics and Automatic Programming

The NOAH system can be easily adapted to control a robot vehicle. Most of the
problems of controlling a robot from a high level plan are easier to deal with than

the corresponding problems involved in assisting a human apprentice. The plan may
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always bé carried out to a uniform level of detail. The robot will not misunderstand
instructions as a human will do. The planner need only produce a single valid plan; it
need not try to model all the valid ways in which a human might accomplish a task.
And the ways in which an action taken by a robot may fail are more predictable than

the ways in which a human’s action may fail.

The use of execution-time tests and information-gathering operations would be

particularly important for this application.

It would also be relatively easy to. adapt the NOAH system to automatic
programming tasks. Again, the plans (sequences of program steps, in this case)
would always be carried out to the level of greatest possible detail. The nonlinear
representation waould be ideal for efficient coding of the detailed steps. In fact,
many optimiiing compilers build some sort of nonlinear representation of the
program in order to perform their work. The use of a SOUP-like higher level
language would make a compiler’s job much easier since the nonlinearity would be

explicit and need not be guessed at.
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VIl SUMMARY AND CONCLUSIONS

A. The Key |deas That Have Been Explored

~In this section we shall reiterate some of the important ideas that have been

explored in this report.

1. Using Imperative Semantics to Generate Frame-Like Structures

We have employed an existing methodology for describing a complex of
interrelated actions to a computer systern: the high-level, goal-oriented PLANNER-
I.ike language. The semantics of our SOUP language are quite similar to other
PLANNER-like fanguages. The NOAH system interprets the language in an
unconventional rﬁanner, however. The statements in the language do not cause the
execution of code, but rather cause the creation of frame-like nodes in the
procedural net. The nodes have many declarative properties that can be individually
accessed. The system can reason efficiently about acticns because of the ease of

analyzing these declarative properties.

2. The Nonlinear Nature of Plans

This work views plans in a different light than previous general purpose
probiem solving systems. Rather than requiring plans of action to be linear
sequences of actions, we view plans as partial orderings of actions with respect to
time. We have demonstrated how, by representing all the freedom of ordering that

is innate in a developing plan, a computer system can solve certain problems directly
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and without backtracking, whereas a linear representation of the plan forces the

inefficient use of backtracking.

3. Planning at Many Levels of Abstraction

-We have extended the exploration of problem solving by planning at
successive levels of detail that was previously studied in a version of GPS [8] and
ABSTRIPS[31]. We have found that this technique is particularly well suited to the
representation of plans as partial orderings of actions. NOAH progressively expands
a plan to- a level of greater detail, and then applies constructive critics to partially
linearize the new, more detailed plan. The critics operate by taking a global look at

the plan that would be too expensive if aIIlthe detéils were to be analyzed at once.

The earlier systems mentioned abové threw away the higher level plans
once the .desired low-level plan was created. But NOAH uses the higher levels to
generate higher level instructions to a human user of the‘system, to aid in
monitoring execution of plans, and to plan efficiently to recover from unexpected

‘situations during plan execution.

4. Execution Monitoring and Error Recovery with Hierarchical Plans

For the cooperative execution of a task by man and computer, the
hierarchical structure of the procédural net seems extremely useful.- it allows the
computer to specify actions at a level of detail no greater than what the human
requires. Thus, the maximum information can be transferred for a given amount of
instruction, and yet the computer system can go into detail whenever it is needed.

Such an approach is essential if the human is {o find the system easy to live with.
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Even for robotics systems in which the instructions must be given at a
fixed low level of detail, the hierarchical representation is useful for establishing
which facts about the world must be checked to mbnitor execution, and for

intelligent error recovery.

B. Using Abstract Plans to Model lterative Operations

An approach to the modelling of iterative actions has been deveioped
that allows the iteration-to be specified, at an abstract level, by a single action.
This allows for efficient development of plans that involve large numbers of

iterations.

6. The |mportance of Structure

if the work in this report can be summarized in a phrase, it is this: the
structure of knowle'dge about actions within a computer memory is as important as

the content of that knowledge.

The structure of the procedural net ‘allows the planner and execution
monitor to deal éfﬁciently with a mass of knowledge about action sequences that
would have overwhelmed most previous systems. Most of NOAH’s understanding of
the actions it is reasoning about is derived from two sources. One is the declarative
characterization of actions as nodes in the procedural net. The other is the

structure of the‘net itself that characterizes the interrelationships between actions.

Since it has a good representation for these interrelatiohships, NAOH can

. take much of the responsibility for integrating individual subplans. Thus, a task
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domain can be specified in a highly modular manner. Rather than encoding a single
highly integrated expert, the definer of a domain can encode a set of rather
decoupled micro-experts, and simply throw them into the SQUP. Because of the
staged execution of the SQUP c-ode, with the building of nodes in the net between
stages, the system can efficiently integrate the subplans generated by the micro-

experts.

B. What Have We Learned?

In 1960, Plans and the Structure of Behavior, by Miller, Galanter, and Pribram

[24] was published as a response by three psychologists to the early work in
artificial intelligence. It discusses plan generation, execution monitoring, planning in
spaces where details are ignored, the integration of subplans into larger plans, and
learning as the development of hierarchical plan structures that can be characterized
as single actions in a meta-plan. These are all topics that have been discussed in
the preceding pages. Indeed, the title of thé present work was chosen to emphasize
the underlying similarity. Have fifteen years of work in artificial intelligence made
no progress? This chapter is an attempt to answer this question with an emphatic

no,

The production of intelligent behavior by the billions of individual neurons in
the cerebrum obviously involves a great deal of structure and organization. 1t is
meaningful to discuss the structures and mechanisms underlying intelligence only in
terms of higher order functional units, such as Image (the authors’ term for an
organism’s world- and self-knowledge), Plan, and operational test. The specific

nature of these functional units, and the ways in which they interrelate, can be quite
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poorly specified in a verbal presentation of a hypothesized organization of
intelligence. Even a small, obviously inadequate number of functional units can
interrelate in so many ways that it is very easy for critical inconsistencies to go

unnoticed, and critical interrelationships to go unspecified.

The field of artificial intelligence imposes upon itself a discipline that makes it
difficult, though demonstrably not impossible, for a theory about some aspect of
intelligence to contain such gaps. That diécipline is the implementation of the theory
in a working computer pro}gram. As Raphael suggested in an early Ph.D. thesis in
artificial intelligence [28)], the production of a éomputer implementation provides a
check that the specificétions for a system are complete and consi_stent; it suggests
ways for avoiding the inconsistencies; its behavior provides insights into the
underlying system that may not have been apparent from a mere descriptipn; and
the resulting program provides a measure of the practicality of the underlying ideas

and an experimental tool for testing variations in the ariginal specification.

Though Miller et al. provide insight into human cognition, it is no more than
insight. Concepts such as "mage,” and “meta-plan” have meanings that are
insufficiently defined to be useful as components of a theory of intelligence. One
product of years of research in artificial intelligence is progress toward the precise
definition of terms that have been used for centuries by insightful men to
characterize aspects of intelligence. The precise definitions are being formed by
example, by the production of running computer programs that embody these

insightful ideas.

The fundamental way in which the work reported here marks progress in
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dealing with the issues underlying intelligence is in a move from insight toward
understanding. Many of the proposals of Miller et al. have been supported by the

demonstration that they can produce intelligent behavior in the NOAH system.

" While mény of their insights have been supported, others have not been dealt
_with in this report, since the scope of the work is much more narrowly defined.
Their suggestions about memory, natural language, and problem representation have
not been touched here. Indeed,. it seems disappointing that the ideas in their book
did not §park more directed research in artificial intelligence to evaluate the issues
that were raised. Of course, without the techniques and tools available today it
would have been difficult to make great progress in this research. On the other
hand, the deéire to do this type of research might have motivated the production of

these techniques and tools at an earlier date.

The basic poini is that artificial intelligence has developed a methodology and 2
set of tools and techniques that can be applied to the study of the mechanisms of
intelligence. The field might well be able to make féster progress in the
understanding of these mechanisms if its workers were to pay more attention to the
output of insightful peaple in other disciplines that were concerned with cognition
from different points of view. The discipline imposed by computer implementation
helps us to debug our own insigl"\ts. But we would do well to seek inspiration from

related work in fields like psychology, linguistics, and philosophy.

One major .insight of Miller, Galanter, and Pribram has been refuted by the
work reported here. They often cited the need for an incredible organizational

complexity to support their ideas. We have shown that this is not necessarily so.
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The structure that supports the intelligent behavior of NOAH is complex, as any
bridge or building is complex. But, as with bridges and buildings, the organizing
principles from which the structure is created are relatfve[y simple. The
performance of the NOAH system in the Computer-Based Consultant creates for the
casual observer a surprising sense of richness. This suggests not that the
mechanisms of the NOAH system are very sophisticated, but rather that the

mechanisms underlying intelligence may be simpler than we think.
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APPENDIX A
THE FIELDS OF A NODE IN THE PROCEDURAL NET

TYPE - Identifies the kind of action that this node represents. One of the following:
GQAL - A simple action to achieve a goal.

PHANTOM - Like a GOAL, but the goal is expected to be already
true when encountered,

BUILD - An iterative action to build up a class of objects.

BREAK - An iterative action to operate on each element of a class
of objects.

SOME - A choice point in the plan. The action specified is applied
to one of a set of possible arguments.

REPLICATE - A special type of action for representing the multipie
iterations of a loop.

ANDSPLIT - Not a true action. This représents a forking in the
partial ordering of the time sequence.

ANDJOIN - Not a true action. This represents a joining of parallel
paths in the time sequence.

QRSPLIT - Not a true action. This represents a choice point in the
time sequence. COnly one of the following sequences of
actions need be carried out.

ORJOIN - Simitar to ANDJOIN.

PLANHEAD - A dummy action indicating the beginning of the plan at
each level.

QUERY - A textual string that describes the action represented by the node. The
_string may be presented to the user of the system, requesting him
to perform the action.

PATTERN - The particular expression that the action will cause to be asserted in
the world madel.

BODY - The code that may be evaluated to expand the action to greater detail.
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© ADDS - A list of all the expressions that are added to the world model (at the
current level of detail) by performing the action represented by
the node. .

DELETES - A list of all the expressions that are del.eted from the world model (at
the current level of detail) by performing the action represented
by the node.

CHILDREN - The set of nodes in the net that, together, represent a more detailed
specification of the action represented by the node.

PARENT - The node of which the current nade is a child.

PREDECESSOR - The preceding node (or nodes) in the partially ordered time
sequence. ‘

SUCCESSOR - The succeeding node (or nodes) in the partially ordered time
sequence.

CONTEXT - The QLISP data context in which the body is to be evaluated. The tree
structure of the contexts is essentially isomorphic to that of the
parent-child links.

1STCHILD -~ The first of the node’s children in time sequence.
LASTCHILD_ - The last of the node’s children in time sequence.

PRECEDING SIBLINGS - A list of the nodes that precede the current node in time
sequence and are children of the current node’s parent. :

PURPQSE - The last child of the node’s parent.

DONTASKUSER ~ A flag to indicate that the subplan beginning with this action has
been so severely altered by criticism at levels of greater detail
that it would be misleading to give any instructions at this level.

EXEMPLAR - A special field for REPLICATE nodes, that points to the subplan that
represents an example of the expansion of the loop that the node
represents,

GENERATED - A list of the formal objects that were generated in the course of
‘ building this node.
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APPENDIX B
SOUP CODE FOR BLOCKS PROBLEMS

(CLEAR
(QLAMBDA

{CLEARTOP «X)
, ) (¢ Take evarything off of

- $X, unless 38X is the TABLE)
(EQG 8X (QUOTE TABLE))
(QPROG

(«Y)
(ATTEMPT (PIS {ON «Y 8X))

THEN (PGOAL (Clear 8Y)
(CLEARTOP 8Y)

APPLY
(CLEAR))
{PRECLUGE «Z 8Y)
{PGOAL (Put 8Y on top of «Z)

{ON 8Y «Z)
APPLY NILJ))
{POENY (ON 8Y 8Xi}
{RETURNI) '
{(PUTON -
{QLAMBOA
(ON «X «Y) ' ‘ '
_ {x Clear 8X and 8Y, then put
‘ 8X on 8Y)
(PANO

- (PGOAL (Clear 8X)
{(CLEARTOP $X)
APPLY
(CLEAR))
{PGOAL (Clear 8Y).
(CLEARTOP 8Y)
APPLY
{(CLEAR} )
{(PGOAL (Put 8X on top of 8Y)
{ON §X 8Y)
APPLY NIL}
(POENY (CLEARTOP 3Y))1)
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(STABILIZE

{QLAMBDA (STABLE «X)
{POR (PGOAL (Put #X on A}
’ {ON §X A)
APPLY
(PUTON))
(PGOAL (Put $X on B)
(ON 8X B)
APPLY
{(PUTONT)
{PUTABOVE
{QLAMBDA (ABOVE «X «Y)
{MATCHQ «TOP (TOWERTOP 8Y))
(PGOAL [(Clear 8X)
{(CLEARTOP $X)
APPLY
(CLEAR})
{(PGOAL (Pface 83X above 8Y)
{ABOYE §X 8Y}
APPLY
{PLACE)} )
{(PDENY (CLEARTOP $TGOP} 1))}
{PLACE
(QLAMBDA (ABOVE «X «Y)
{MATCHA «TOP (TOWERTOP 8Y}]
(PGOAL (Put %X on STOP)
{ON X 8TGP)
APPLY
{PUTON)} 1))
"{TOWERTOPR
[(LAMBOA (BASE)
{ATTEMPT (PIS (ON «TOP (e BASE}})
THEN (TOWERTOP $TOP}
ELSE BASEI)
{TAKEQFF

(QLAMBOA (NOT (ON «Y «X})

{PGOAL (Clear 38Y)
{CLEARTOP 38Y)
APPLY
(CLEAR) )
(POENY {ON 8Y $X))
(PGOAL {Put 8Y on top of «Z)
{ON 8Y «Z) '
APPLY NIL)))

(¥ This code is specific for
tha exanple in the taxt)

(% To stabilize $X, put it
on A or B)

{x Clear 8X and place it on
top of the tower above $Y)

(¥ Compute the block on top
of the tower above 8Y}
(* Put 8X on that block)

{# Compute the topmost block
above BASE)

(x Takae 8Y off 4X)
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The value of SALLFNS for this set of problems is: (PUTON CLEAR STABILIZE
PUTABQVE PLACE TAKEQOFF). .
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APPENDIX C
SOUP CODE FOR THE 'KEYS AND BOXES’ PROBLEM

CINIT

[LAMBDA NIL : (% Set up the initial
vorld model for the
problem}

{ASSERT (CONTAINS KEY 1 BOX1 (BAG BOX1 BOX2))
SIZE INGEFINITE)

(ASSERT (CONTAINS KEY 1 BOX2 (BAG BOX1 BOX2))
SI1ZE INDEFINITE)

(ASSERT (CONTAINS RED 1 DOOR DOOR)
SIZE INDEFINITE)

(ASSERT (CONTAINS NOTHING @ TABLE TABLE)
SIZE 81)

{GOTO
{(QLAMBDOA (AT ROBOT «LOC} ’
{OR (NEQ 8LOC (QUOTE OUTSICE))
(ATTEHPT {PIS {AT (KEY «KEY}
C00R))
ELSE (PGOAL (Bring a key to DDUR}
{AT (KEY «KEY)
DOGR)
APPLY $ALLFNS TYPE KEY)))
{PGOAL (Go to 8$LOC}
(AT ROBOT $LOC)
APPLY NIL)J}

{PICKUP
" (QLAMBDA (HOLDING «0BJECT)
’ (EMPTYHANC) ‘
(PIS (AT 80BJECT «LOC}}
(PGOAL (Go to 3LOC)
(AT ROBOT SLDC)
APPLY
(GOTO) )
{PGOAL (Pick up SOBJECT}
{HOLDING $0BJECT)
APPLY NIL)
(PDENY (AT SOBJECT 8LOC)) '
(PDENY (EMPTYHANDED ROBOT)))}

{(PUTDOWN
(QLAMBDA (AT «0BJECT
«L0C)

(PIS (AT ROBOT sLOC))

(CASES (AT $0BJECT sLOC)
APPLY 80EMONS)

{PGODAL (Put down SOBJECT)
{AT S0BJECT SLOC)
APPLY NIL)

{PASSERT (EMPTYHANDED ROBOT})

{(PDENY {(HOLDING 80BJECT}})))
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{TRANSFER
(QLAMBOA (AT «0OBJECT
«LOCATION) {% Move a given object
to a given location)

{PGOAL {Acquire SOBJECT)
(HOLOING 80BJECT)
APPLY
(PICKUR})

[(ATTEHMPT (PDENY (@(PIS (AT ROBOT «X]

{(PGOAL (Go to SLOCATION)
(AT ROBOT $LOCATION)
APPLY
{GOTQ))

(PGOAL (Put down S$0BJECT)

: (AT SOBJECT $LOCATION)

APPLY
{PUTOOWN}I 1)

(MOVEINSTANCE
{QLAMBOA (AT (eTYPE
«0BJECT)

«LOCATION) {# Move an object of a
given tuype to a given
location)

(COND
({GETP 80BJECT (QUOTE SPECIFICOBJECT))
(P15 (AT 80BJECT «CURLGC))
{PIS (CONTAINS 8TYPE «DEPTH
$CURLOC «~PARTNERS)))
(T (PIS (CONTAINS S8TYPE ~0EPTH
+«CURLOC
+PARTNERS]
{COND
{ (ATOM 8PARTNERS)
(MATCHQ «0BJECT
{GENITEM STYPE))
(PASSERT (AT $0BJECT $PARTNERS))
(PGOAL (Transfer an object $0BJECT from SPARTNERS
to SLOCATIGN)
(AT GOBJECT S8LOCATION)
APPLY
(TRANSFER)))
{T- (EMPTYHAND)
(PBREAK $PARTNERS (Transfer objects
from (@(PRAND (COR SPARTNERS)))
. to SLOCATION)
(ITERATE (@(SUB1 (LENGTH SPARTNERS)})
«PLACE.
(PROGN (MATCHQ «MEMBER
(GENITEM STYPE))
{PASSERT (AT SMEMBER S$PLACE}}
{PGOAL(Transfar SMEMBER
' from SPLACE
. to SLOCATION)
{AT SMEMBER $LOCATION)
APPLY
: : {TRANSFER]
{PASSERT (AT (S8TYPE $0BJECT)
$LOCATION)
APPLY 8DEMONS)))
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{MOVESPECIFICOBUJECT
[QLAMBOA {AT «DBJECT
«~LOCATION]) (% If the OBJECT is of a
knouwn type, invoke
MOYEINSTANCE)
(% Dtherwise, the more.
general TRANSFER
function will be
invoked)
{(PROG [(T%EE (GETP $0BJECT (QUOTE TYPE]
(CO

[TYPE (PUT ??BJECT (QUOTE SPECIFICOBJECT)

(RETURN (MOVEINSTANCE
(" (AT ({e TYPE)
$0BJECT)
SLOCATIONI
({FAILI])

(EMPTYHAND
[LAMBDA NIL

(% Put down the object currently held where it will
muddle things up the lsast)

(ATTEMPT (PIS (EMPTYHANDEO ROBOT))
ELSE (QPROG ({~0BJECT
«PLACELIST)
[ATTEMPT (PIS (HOLDING «0OBJECT})
ELSE (MATCHQ «0BJECT
{GENITEM (QUOTE UNKNOUWNI]
(MATCHQ «PLACELIST
(ORDERBYINTEGRITY $PLACES))
[PSOME $PLACELIST (Put down $0BJECT
in one
of (e(PROR $PLACELIST}))
(ITERATE SPLACELIST «P
(PROGN (PGDAL (Go to §P)
(AT ROBOT §P}
APPLY
- (60T0))
(PGOAL {Put down S0BJECT)
(AT $OBJECT $P}
APPLY

(PUTDOWN]
{PDENY (HOLDING SOBJECT))
(RETURN (PASSERT (EMPTYHANDED ROBOT])
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(COMPUTECONTAINMENT
[QLAMBOA (AT «OBJECT
| «L0C)

(% Update the modei of what is at LOC when OBJECT is
nplaced therel-

(MATCHQ <OBJTYPE ‘
(GETP $OBJECT {QUOTE TYPE)})
(ATTENPT (PIS (CONTAINS cLOCTYPE

-
8L0C «PARTNERS))
‘THEN (CONO

((NEQ SLOCTYPE $0BJTYPE)
[CONOD :
{ (ATOM SPARTNERS)
{MATCHOQ <PARTNERS
: {BAG 8PARTNERSI
. (POENY (CONTAINS 8LOCTYPE $N 8LOC SPARTNERS))
[OR (EQ $LOCTYPE (QUOTE NOTHING))
(PASSERT (CONTAINS 8LOCTYPE
(@ (ADD1 8N})
sLOC

(BAG SLOC #SPARTNERS]
(PASSERT (CONTAINS 80BJTYPE

(@ (ADD1 $N))
$LOC
(BAG 8LOC 8SPARTNERSI)

{COMPUTEINTEGRITY

[LAMBDA (PLACE) (% Compute how "muddied"

a given PLACE is)
{OR (GETP PLACE (QUOTE INTEGRITYMEASURE})

(QPROG (+PROP
-
«PARTNERS)
(RETURN (PUT PLACE (QUOTE INTEGRITYMEASURE)
(ATTEMPT (PIS (CONTAINS «PRQOP

«N
{e PLACE)
«PARTNERS) }
THEN (CONO
{ (NUMBERP &N)
SN}
{T 939991}
ELSE $33931)
{DRDERBYINTEGRITY
[LAMBDA (PLACES) {x Order the Iist PLACES

by increasing

S "muddlednsss")
(PROG (PLACELIST)

[MAPC PLACES (FUNCTION (LAMBOA (PLACE)
(PUT z%ﬁ?E (QUOTE INTEGRITYMEASURE)
{SETQ PLACELIST (SORT(COPY PLACES)
(FUNCTION OROERTOPRESERVEINTEGRITY)))
[(MAPC PLACEg (FUNCTION (LAMBOA (PLACE)
(CONO
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((EQP‘égggT PLACE (QUOTE INTEGRITYMEASURE))
(SETQ PLACELIST (DREMOYE PLACE PLACELISTI]
(RETURN PLACELISTI)

(ORDERTOPRESERYEINTEGRITY
[LAMBDA (PLACE1 PLACE2)
(ILESSP (COMPUTEINTEGRITY PLACE1)
_ (COMPUTEINTEGRITY PLACEZ))

(GENITEM
(LAMBDA (TYPE)
{CAR {GENOBJECT TYPE])

The value of $SALLFNS for this problem is: (GOTC MOVEINSTANCE
MOVESPECIFICOBJECT TRANSFER PICKUP PUTDOWN). The value of SPLACES is:
(OUTSIDE DOOR BOX1 BOX2 TABLE). The wvalue of 8DEMONS is:
{(COMPUTECONTAINMENT).





